CNS/CS/EE 188a Computation Theory and Neural Systems - Homework 6.2 (b)

Ling Li, ling@cs.caltech.edu
March 29, 2001

Sorting. For n even and inputs $x_{1}, x_{2}, \ldots, x_{n}$, construct n integers with n bits each:

$$
\begin{array}{rcccc}
X_{1}: & x_{1} & x_{2} & 1 & \mathbf{0} \\
X_{2}: & x_{3} & x_{4} & 1 & \mathbf{0} \\
& \vdots & & & \\
X_{\frac{n}{2}}: & x_{n-1} & x_{n} & 1 & \mathbf{0} \\
X_{\frac{n}{2}+1}: & 1 & 1 & 0 & \mathbf{1} \\
X_{\frac{n}{2}+2}: & 1 & 1 & 0 & \mathbf{2} \\
& \vdots & & & \\
X_{n}: & 1 & 1 & 0 & \frac{n}{2}
\end{array}
$$

Here I use bold symbol to represent the binary form of a number (and, of course, with 0's padded in the front of the binary string). For example, $\boldsymbol{5}=0 \ldots 0101$. For $i \leq \frac{n}{2}$ and $j>\frac{n}{2}, X_{i} \neq X_{j}$; and $X_{i}>X_{j}$ iff $x_{2 i-1} \wedge x_{2 i}$ is 1 ; and for $j_{1}>j_{2}>\frac{n}{2}, X_{j_{1}}>X_{j_{2}}$.
Sort these n numbers and we get n sorted numbers $X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}$. Assume the sorting network makes $X_{1}^{\prime} \leq X_{2}^{\prime} \leq \cdots \leq X_{n}^{\prime}$. Then we claim that $I P 2\left(x_{1}, x_{2}, \ldots, x_{n}\right)=X_{\frac{n}{2}, 0}^{\prime}$, the least significant bit of $X_{\frac{n}{2}}^{\prime}$. Proof omitted.
Note: In order to accommodate $\frac{n}{2}$ in $n-3$ bits, we need

$$
2^{n-3}>\frac{n}{2}
$$

That is, $n \geq 6$ (since n is even).

