CNS/CS/EE 188a Computation Theory and Neural Systems - Homework 6.2 (b)

 $Ling \ Li, \ \texttt{ling@cs.caltech.edu}$

March 29, 2001

Sorting. For n even and inputs x_1, x_2, \ldots, x_n , construct n integers with n bits each:

X_1 :	x_1	x_2	1	0
X_2 :	x_3	x_4	1	0
	:			
$X_{\frac{n}{2}}$:	x_{n-1}	x_n	1	0
$X_{\frac{n}{2}+1}$:	1	1	0	1
$X_{\frac{n}{2}+2}^{2}:$	1	1	0	2
2	:			
X_n :	1	1	0	$\frac{n}{2}$

Here I use bold symbol to represent the binary form of a number (and, of course, with 0's padded in the front of the binary string). For example, $\mathbf{5} = 0 \dots 0101$. For $i \leq \frac{n}{2}$ and $j > \frac{n}{2}$, $X_i \neq X_j$; and $X_i > X_j$ iff $x_{2i-1} \wedge x_{2i}$ is 1; and for $j_1 > j_2 > \frac{n}{2}$, $X_{j_1} > X_{j_2}$.

Sort these *n* numbers and we get *n* sorted numbers X'_1, X'_2, \ldots, X'_n . Assume the sorting network makes $X'_1 \leq X'_2 \leq \cdots \leq X'_n$. Then we claim that $IP2(x_1, x_2, \ldots, x_n) = X'_{\frac{n}{2},0}$, the least significant bit of $X'_{\frac{n}{2}}$. Proof omitted.

Note: In order to accommodate $\frac{n}{2}$ in n-3 bits, we need

$$2^{n-3} > \frac{n}{2}.$$

That is, $n \ge 6$ (since n is even).