BEM 103 Introduction to Finance - Homework 1

Ling Li, ling@cs.caltech.edu

October 11, 2001
5.1 Present Value. From $r_{t}=\sqrt[t]{\frac{1}{P_{t}}}-1$, we get

t	1	2	3
P_{t}	0.95	0.9	0.85
r_{t}	5.26%	5.41%	5.57%

The present value of cash flows $X_{t}=100$ for $t=1,2,3$ is

$$
\mathrm{PV}=\sum_{t=1}^{3} P_{t} X_{t}=270
$$

5.2 Borrowing. For a loan L from BankTwo, it will be

$$
L \times\left(1+\frac{10 \%}{4}\right)^{4} \approx 1.1038 L
$$

after 1 year. If it is from BankThree, it will be

$$
L \times(1+10.5 \%)=1.105 L
$$

So, BankTwo gives a better offer.
5.5 Bonds. We can set up equations of those bonds prices

$$
\begin{aligned}
1000 \times\left(10 \% P_{1}+10 \% P_{2}+P_{2}\right) & =1043.29 \\
1000 \times\left(20 \% P_{1}+20 \% P_{2}+P_{2}\right) & =1220.78 \\
1000 \times\left(8 \% P_{1}+8 \% P_{2}+8 \% P_{3}+P_{3}\right) & =995.09
\end{aligned}
$$

Solve these equations, we get

$$
P_{1} \approx 0.9091, \quad P_{2} \approx 0.8658, \quad P_{3} \approx 0.7899
$$

From $r_{t}=\sqrt[t]{\frac{1}{P_{t}}}-1$, we get

$$
r_{1} \approx 9.999 \%, \quad r_{2} \approx 7.471 \%, \quad r_{3} \approx 8.179 \%
$$

5.6 Stock. $r=10 \%$. Today's stock price should be the sum of future payments. That is

$$
\begin{aligned}
P & =\frac{10 \times 1.1}{1+r}+\frac{10 \times 1.1^{2}}{(1+r)^{2}}+\sum_{t=3}^{\infty} \frac{10 \times 1.1^{2} \times 1.02^{t-2}}{(1+r)^{t}} \\
& =147.5
\end{aligned}
$$

The just-paid dividend is not included when calculating P.
5.8 Growing perpetuity. For $r>g$,

$$
\mathrm{PV}=\sum_{t=1}^{\infty} \frac{X_{1}(1+g)^{t-1}}{(1+r)^{t}}=\frac{X_{1}}{1+g} \sum_{t=1}^{\infty}\left(\frac{1+g}{1+r}\right)^{t}=\frac{X_{1}}{1+g} \sum_{t=1}^{\infty} \frac{1}{\left(1+\frac{r-g}{1+g}\right)^{t}}=\frac{X_{1}}{1+g} \cdot \frac{1}{\frac{r-g}{1+g}}=\frac{X_{1}}{r-g}
$$

5.9 Annuity. For $r>0$, we have

$$
\begin{aligned}
\sum_{t=1}^{T} \frac{X}{(1+r)^{t}} & =\sum_{t=1}^{\infty} \frac{X}{(1+r)^{t}}-\sum_{t=T+1}^{\infty} \frac{X}{(1+r)^{t}} \\
& =\sum_{t=1}^{\infty} \frac{X}{(1+r)^{t}}-\frac{1}{(1+r)^{T}} \sum_{t=1}^{\infty} \frac{X}{(1+r)^{t}} \\
& =\frac{X}{r}-\frac{1}{(1+r)^{T}} \frac{X}{r}=X\left[\frac{1}{r}-\frac{1}{r} \frac{1}{(1+r)^{T}}\right] .
\end{aligned}
$$

5.12 Jane. If she invests X today, the return is $(1+5 \%)^{4} X$. Thus she needs to invest

$$
X=\frac{55000}{(1+5 \%)^{4}} \approx 45248.64
$$

If she invests X once a year, the return at the end of the fourth year is

$$
X \sum_{t=1}^{4}(1+5 \%)^{t} .
$$

Thus the amount of investment should be

$$
X=\frac{55000}{\sum_{t=1}^{4}(1+5 \%)^{t}} \approx 12153.00
$$

6.3 Machine. Let's repeat the first option 4 times, the second option twice, and the third option once, to make them have the same life length. The PV of the costs for those options are

$$
\sum_{t=0}^{3} \frac{47}{(1+10 \%)^{2 t}} \approx 144.47, \quad 90+\frac{90}{(1+10 \%)^{4}} \approx 151.47, \quad 300
$$

respectively. Thus the best option is to make some small repairs for a cost of 47 .
6.5 Project. During the project life, the taxable income each year is

$$
200-100-\frac{240}{3}=20
$$

so the tax is $20 \times 40 \%=8$, except the last year, which has more income.

$$
\mathrm{NPV}=-240-60+\sum_{t=1}^{3} \frac{200-100-8}{(1+8 \%)^{t}}+\frac{40 \times(1-40 \%)+60}{(1+8 \%)^{3}} \approx 3.77
$$

6.6 C\&C. Let X denote the units the $\mathrm{C} \& \mathrm{C}$ company produces per year. The accounting profits are

$$
1.5 X-1500-\frac{2000}{5}-0.5 X=X-1900
$$

So the accounting break-even point is 1900 units per year. However, if $X>1900$, the tax is

$$
(X-1900) \times 34 \%
$$

and the NPV of the machine is

$$
-2000+\sum_{t=1}^{5} \frac{X-1500-(X-1900) \times 34 \%}{(1+16 \%)^{t}}=\frac{(0.66 X-854)}{16 \%}\left[1-(1+16 \%)^{-5}\right]-2000
$$

and the PV break-even point is $X \approx 2219.42$, i.e., 2219 units per year.
6.7 PillAdvent. We calculate cash flows in real terms. Let M stand for million. For the headacheonly medication, the income in year t is $5 \mathrm{M} \times(4-1.5)=12.5 \mathrm{M}$, and the tax is

$$
\left(12.5 \mathrm{M}-\frac{10.2 \mathrm{M}}{3 \times 1.05^{t}}\right) \times 34 \%
$$

So the NPV over 3 years is

$$
-10.2 \mathrm{M}+\sum_{t=1}^{3} \frac{12.5 \mathrm{M}-\left(12.5 \mathrm{M}-\frac{10.2 \mathrm{M}}{3 \times 1.5^{t}}\right) \times 34 \%}{(1+13 \%)^{t}}=11.77 \mathrm{M}
$$

For the more general pill, the income in year t is $10 \mathrm{M} \times(4-1.7)=23 \mathrm{M}$ and the tax is

$$
\left(23 \mathrm{M}-\frac{12 \mathrm{M}}{3 \times 1.05^{t}}\right) \times 34 \%
$$

Since in this case, we are able to sell the machine for 1 M at the end of 3 years, the NPV is

$$
-12 \mathrm{M}+\sum_{t=1}^{3} \frac{23 \mathrm{M}-\left(23 \mathrm{M}-\frac{12 \mathrm{M}}{3 \times 1.05^{t}}\right) \times 34 \%}{(1+13 \%)^{t}}+\frac{1 \mathrm{M} \times(1-34 \%)}{(1+13 \%)^{3}} \approx 27.23 \mathrm{M}
$$

So the company should produce the more general one.

