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6.1 Linear programming. Let the Lagrange multipliers λ =
(
y
s

)
, where y is for constraints Ax−b = 0

and s for x ≥ 0. Then the Lagrangian function is

L(x, λ) ≡ cTx− yT (Ax− b)− sTx.

For optimal pair (x∗, λ∗), the 1st order KKT conditions are

∇xL(x∗, λ∗) = c−AT y∗ − s∗ = 0,
s∗ ≥ 0,

s∗ix
∗
i = 0, ∀i ∈ I.

For feasible point x∗ satisfying above conditions, x∗ must be an optimal solution since the
above conditions, together with feasibility conditions, constitute the primal-dual LP optimality
conditions: AT y + s = c, Ax = b, x ≥ 0, s ≥ 0, and xT s = 0.

Trust region subproblem. The problem is to minimize mk(p) = fk +∇fTk p + 1
2p
TBkp subject

to ‖p‖ ≤ ∆k, where Bk is symmetric but not necessarily positive definite. The constraint can
be written as

c(p) = ∆2
k − pT p ≥ 0.

Thus the Lagrangian function is

L(p, λ) ≡ fk +∇fTk p+
1
2
pTBkp− λ(∆2

k − pT p).

The 1st order KKT conditions for optimal pair (p∗, λ∗) are

∇pL(p∗, λ∗) = ∇fk +Bkp
∗ + 2λ∗p∗ = 0,

λ∗ ≥ 0,
λ∗(∆2

k − p∗
T p∗) = 0.

If Bk is positive definite, and
∥∥B−1

k ∇fk
∥∥ ≤ ∆k, then p∗ = −B−1

k ∇fk and λ∗ = 0 satisfy the
above conditions.

6.2 Let x1 and x2 denote the length and width of the rectangle. The perimeter is 2(x1 + x2). The
problem is formulated as

min f(x) = −2(x1 + x2),
subject to x1, x2 ≥ 0, (1)

x2
1 + x2

2 − 16 = 0. (2)
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The Lagrangian function is

L(x, λ) ≡ −2(x1 + x2)− λ1x1 − λ2x2 − λ3(x2
1 + x2

2 − 16).

From the 1st order KKT conditions, the optimal (x∗, λ∗) satisfies

∇xL(x∗, λ∗) =
(
−2− λ∗1 − 2λ∗3x

∗
1

−2− λ∗2 − 2λ∗3x
∗
2

)
= 0,

λ∗1x
∗
1 = λ∗2x

∗
2 = 0,

λ∗1, λ
∗
2 ≥ 0.

Thus 0 = (−2−λ∗1−2λ∗3x
∗
1)λ∗1 = −λ∗1(λ∗1+2), i.e., λ∗1 = 0. Similarly, λ∗2 = 0. So x∗1 = x∗2 = − 1

λ∗3
.

From constraints (1) and (2), we have x∗1 = x∗2 = 2
√

2, and λ∗3 = − 1
2
√

2
. We can verify the

optimality since

∇xxL(x∗, λ∗) =
(
−2λ∗3 0

0 −2λ∗3

)
=

(
1√
2

0
0 1√

2

)

is positive definite.

Among constraints for the original problem, only (2) is active. Consider the perturbed problem

min f(x) = −2(x1 + x2),
subject to x2

1 + x2
2 − 16 = ε.

For |ε| small enough, the optimal solution is x∗1(ε) = x∗2(ε) =
√

16+ε
2 . The primal function is

p(ε) = f(x∗(ε)) = −4

√
16 + ε

2
.

The derivative of p(ε) is

∇p(ε) = −
√

2
16 + ε

.

Thus ∇p(0) = − 1
2
√

2
= λ∗3.

6.3 Write the problem in the form of constrained nonlinear programming:

min f(x) = −πh2(r − h/3)
subject to c1(x) = 2πrh− S = 0,

c2(x) = r ≥ 0,
c3(x) = h ≥ 0,

where x = (r, h)T , and S > 0 is the required spherical area. Let λ = (λ1, λ2, λ3)T denote the
Lagrange multipliers. The Lagrangian function is

L(x, λ) ≡ f(x)− λT c(x) = −πh2(r − h/3)− λ1(2πrh− S)− λ2r − λ3h.
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From the 1st order KKT conditions, the optimal pair (x∗, λ∗) satisfies

∇xL(x∗, λ∗) =
(

−πh∗(h∗ + 2λ∗1)− λ∗2
πh∗2 − 2πh∗r∗ − 2πλ∗1r∗ − λ∗3

)
= 0,

λ∗2, λ
∗
3 ≥ 0,

λ∗2r
∗ = λ∗3h

∗ = 0,

and c1(x∗) = 2πr∗h∗ − S = 0. Since S > 0, we get r∗ > 0, h∗ > 0. Thus λ∗2 = λ∗3 = 0. Only c1

is active. Then we get r∗ = h∗ = −2λ∗1 =
√

S
2π .

We also have

∇xxL(x∗, λ∗) =
(

0 −2π(h∗ + λ∗1)
−2π(h∗ + λ∗1) 2π(h∗ − r∗)

)
=
(

0 −πh∗
−πh∗ 0

)
.

For any 1st order feasible direction d = (dr, dh)T such that d 6= 0, and

∇c1(x∗)Td = 2πh∗dr + 2πr∗dh = 0,

we have dr = −dh 6= 0. Thus

dT∇xxL(x∗, λ∗)d = −2πh∗drdh =
√

2πSd2
h > 0.

Hence (from the sufficient conditions) r∗ = h∗ =
√

S
2π is the only strict local minimizer, and

thus maximizes the segment volume (the maximum is 2π
3

(√
S
2π

)3

= S3/2

3
√

2π
).

6.4 The logarithmic barrier method solves the unconstrained problem

x(µ) = arg min
x
B(x, µ) =

1
2
x2

1 +
1
2
x2

2 − µ ln(x1 + x2 − 1), (3)

and seeks convergence as µ ↓ 0. To solve (3), let

∇xB(x, µ) =
(
x1 − µ

x1+x2−1

x2 − µ
x1+x2−1

)
= 0.

Since x1 + x2 ≥ 1, we get x1 = x2 = 1+
√

1+8µ
4 . Thus when µ ↓ 0,

x(µ) =
(

1 +
√

1 + 8µ
4

,
1 +
√

1 + 8µ
4

)T
→
(

1
2
,
1
2

)T
.

The Lagrange multiplier estimate is defined as

λ(µ) =
µ

c(x(µ))
=

µ
1+
√

1+8µ
2 − 1

=
1 +
√

1 + 8µ
4

.

Thus λ(µ)→ 1
2 when µ ↓ 0. So we get x∗ = (1

2 ,
1
2)T and λ∗ = 1

2 .

The Hessian of B(x, µ) is

∇xxB(x, µ) =

(
1 + µ

(x1+x2−1)2
µ

(x1+x2−1)2

µ
(x1+x2−1)2 1 + µ

(x1+x2−1)2

)
.

3



The condition number of the Hessian is

κ = 1 +
2µ

(x1 + x2 − 1)2
.

For the Hessian at x(µ), the condition number is

κ(µ) = 1 +
2µ(

1+
√

1+8µ
2 − 1

)2 = 1 +
1

2µ

(
1 +
√

1 + 8µ
2

)2

.

When µ is very close to 0, κ(µ) ≈ 1
2µ becomes very large, and κ(µ)→ +∞ when µ ↓ 0.

6.5 f(x) = 1
2x

TQx+ θbTx and c(x) = bTx = 0.

• Since Q is positive definite on the subspace bTx = 0, the optimal solution is x∗ = 0. Thus
∇f(x∗) = Qx∗ + θb = θb, ∇c(x∗) = b. So λ∗ = θ.

• The augmented Lagrangian for this problem is (a > 0)

La(x, λ) ≡ f(x)− λT c(x) +
a

2
‖c(x)‖2 =

1
2
xT (Q+ abbT )x+ (θ − λ)bTx. (4)

For λ = λk 6= θ, if (4) has a minimum, Q+ abbT must be invertible.∗ Then from

(Q+ abbT )Q−1b = b+ abbTQ−1b = (1 + abTQ−1b)b,

we have Q−1b = (1 + abTQ−1b)(Q + abbT )−1b. Also from QQ−1b = b 6= 0, we know
Q−1b 6= 0. Thus 1 + abTQ−1b 6= 0, and

(Q+ abbT )−1b =
Q−1b

1 + abTQ−1b
.

The 1st order condition ∇xLa(xk, λk) = (Q+ abbT )xk + (θ − λk)b = 0 gives

xk = (λk − θ)(Q+ abbT )−1b =
(λk − θ)Q−1b

1 + abTQ−1b
. (5)

So, if (4) has a minimum for λk 6= θ, it is given by (5). (If λk = θ, there may be many
minimizers.)

• We would prove

xk = − θQ−1b

(1 + abTQ−1b)k
, λk = −θ

[
1

(1 + abTQ−1b)k−1
− 1

]
, (6)

by induction. For k = 1, by initialization, λ1 = 0 6= θ, and by (5),

x1 =
(0− θ)Q−1b

1 + abTQ−1b
= − θQ−1b

1 + abTQ−1b
.

∗Otherwise there exists x̂ 6= 0 such that (Q + abbT )x̂ = 0. Since Q is positive definite on the subspace bTx = 0, if
bT x̂ = 0, x̂T (Q+abbT )x̂ = x̂TQx̂ > 0, contradicting (Q+abbT )x̂ = 0. So bT x̂ 6= 0. Thus La(kx̂, λk) = k

[
(θ − λk)bT x̂

]
,

where k is a scalar. Clearly La has no minimum.
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So (6) holds for k = 1.
Suppose (6) holds for k. Then we estimate the multiplier as

λk+1 ≡ λk − a · c(xk)

= −θ

[
1 + abTQ−1b

(1 + abTQ−1b)k
− 1

]
+ abT

θQ−1b

(1 + abTQ−1b)k

= −θ

[
1

(1 + abTQ−1b)k
− 1

]
.

We still have λk+1 6= θ. Then by (5),

xk+1 =
−θ

(1+abTQ−1b)k
Q−1b

1 + abTQ−1b
= − θQ−1b

(1 + abTQ−1b)k+1
.

So (6) also holds for k + 1.

• The convergences of xk to x∗ and λk to λ∗ require
∣∣1 + abTQ−1b

∣∣ > 1. If bTQ−1b > 0,
a can be any positive number; if bTQ−1b < 0, then a > − 2

bTQ−1b
; if bTQ−1b = 0, no a

satisfies the convergence requirement. If xk, λk converge, the larger a is, the faster they
converge. However, since a is fixed, the convergence rate is always linear.

6.6 Underneath idea: Let y(k), s(k) be the feasible pair at step k for the dual problem. Let B, N
represent basic and nonbasic variables for the primal problem. From AT y + s = c,

sN = cN − (B−1N)T (cB − sB).

For step k, we have s(k)
N ≥ 0, s(k)

B = 0, and s
(k)
N = cN − (B−1N)T cB. So

sN = s
(k)
N + (B−1N)T sB. (7)

If xp (p ∈ B) is a variable that doesn’t satisfy the feasible condition for the primal problem,
that is, xp < 0, we need to find another variable xq (q ∈ N) to replace xp in the basis. Since

s
(k+1)
B = (0, . . . , 0, s(k+1)

p , 0, . . . , 0), (8)

denoting row p of B−1N by t, from (7) we get

s
(k+1)
N = s

(k)
N + tT s(k+1)

p . (9)

If t ≥ 0, then s
(k+1)
p is unbounded, and the primal problem is infeasible. Otherwise, since we

need to maintain s(k+1) ≥ 0, s(k+1)
p should satisfy

s(k+1)
p = min

i∈N
ti<0

{
−
s

(k)
i

ti

}
.

Algorithm: Suppose initially there exists an initial dual-feasible pair y(0), s(0). B and N
represent the basic and nonbasic variables. k = 0.
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(a) Calculate xB = B−1b. If xB ≥ 0, do optimal print and stop.

(b) Select p ∈ B with xp < 0. Calculate t = (B−1N)row p, or t = (B−1)row pN .

(c) If t ≥ 0, the primal problem is infeasible. Stop.

(d) Calculate

q = arg min
i∈N
ti<0

{
−
s

(k)
i

ti

}
,

and s(k+1)
p = − s

(k)
q

tq
. Update s using (8) and (9). Update B, N by removing p and adding

q to B.

(e) k ← k + 1. Goto (a).

Example. For LP in the problem, add two surplus variables x3 and x4. The LP becomes

min z = 5x1 + 4x2

subject to 4x1 + 3x2 − x3 = 10,
3x1 − 5x2 − x4 = 12,
x1, x2, x3, x4 ≥ 0.

Consider the initial basis xB = (x3, x4)T . Multiplying the constraints by −1, we obtain

basic x1 x2 x3 x4 rhs
−z 5 4 0 0 0
x3 −4 −3 1 0 −10
x4 −3 5 0 1 −12 ⇐

→

basic x1 x2 x3 x4 rhs

−z 0 37
3 0 5

3 −20

x3 0 −29
3 1 −4

3 6
x1 1 −5

3 0 −1
3 4

Thus the optimal solution is (x1, x2, x3, x4)T = (4, 0, 6, 0)T and the objective is 20.

6.7 The feasible set of the original integer linear program is shown in Figure 1(a). From the figure,
the optimal continuous solution is x = (1, 3

2)T , with objective −3
2 ; and the optimal integer

solution is x = (1, 1)T , with objective −1.

Introduce x3 and x4 as slack variables. The relaxation LP problem is

min z = −x2

subject to 3x1 + 2x2 + x3 = 6, (10)
−3x1 + 2x2 + x4 = 0, (11)
x ≥ 0.

Start from basis (x3, x4)T , we get
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⇓
basic x1 x2 x3 x4 rhs

−z 0 −1 0 0 0

x3 3 2 1 0 6
x4 −3 2 0 1 0

→

⇓
basic x1 x2 x3 x4 rhs

−z −3
2 0 0 1

2 0

x3 6 0 1 −1 6
x2 −3

2 1 0 1
2 0

↓
basic x1 x2 x3 x4 rhs

−z 0 0 1
4

1
4

3
2

x1 1 0 1
6 −1

6 1
x2 0 1 1

4
1
4

3
2

The continuous solution is (x1, x2)T = (1, 3
2)T , where x2 is not an integer. Consider row

2 of B−1N (the last row of the above table), we get d23 = d24 = 1
4 and d20 = 3

2 . From
f2j ≡ d2j − bd2jc, the Gomory cut is

1
4
x3 +

1
4
x4 ≥

1
2
. (12)

Since (10) plus (11) gives 4x2 + x3 + x4 = 6, (12) is equivalent to

x2 ≤ 1. (13)

The feasible set (on the x1-x2 plane) after this cut is in Figure 1(b).

Introduce slack variable x5. Then (13) becomes another constraint:

x2 + x5 = 1. (14)

Now the relaxation LP problem is solved as
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(a) Original ILP
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(b) First cut
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(c) Second cut

Figure 1: Feasible sets (shadows) of the relaxation LP problems. Red circles are integer pointers.
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⇓
basic x1 x2 x3 x4 x5 rhs

−z 0 −1 0 0 0 0

x3 3 2 1 0 0 6
x4 −3 2 0 1 0 0
x5 0 1 0 0 1 1

→

⇓
basic x1 x2 x3 x4 x5 rhs

−z −3
2 0 0 1

2 0 0

x3 6 0 1 −1 0 6
x2 −3

2 1 0 1
2 0 0

x5
3
2 0 0 −1

2 1 1

↓
basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 0 1 1

x3 0 0 1 1 −4 2
x2 0 1 0 0 1 1
x1 1 0 0 −1

3
2
3

2
3

x1 = 2
3 is not an integer. Consider row 1 of B−1N (the last row of the above table), we get

d14 = −1
3 , d15 = 2

3 , and d10 = 2
3 . Thus the Gomory cut is

2
3
x4 +

2
3
x5 ≥

2
3
. (15)

Since (11) plus (14) gives −3x1 + 3x2 + x4 + x5 = 1, (15) is equivalent to

−x1 + x2 ≤ 0. (16)

The feasible set (on the x1-x2 plane) after this second cut is in Figure 1(c).

Introduce slack variable x6. Then (16) becomes constraint

−x1 + x2 + x6 = 0. (17)

With (17), the relaxation LP problem now is solved as

⇓
basic x1 x2 x3 x4 x5 x6 rhs

−z 0 −1 0 0 0 0 0

x3 3 2 1 0 0 0 6
x4 −3 2 0 1 0 0 0
x5 0 1 0 0 1 0 1
x6 −1 1 0 0 0 1 0

→

⇓
basic x1 x2 x3 x4 x5 x6 rhs

−z −1 0 0 0 0 1 0

x3 5 0 1 0 0 −2 6
x4 −1 0 0 1 0 −2 0
x5 1 0 0 0 1 −1 1
x2 −1 1 0 0 0 1 0

↓
basic x1 x2 x3 x4 x5 x6 rhs

−z 0 0 0 0 1 0 1

x3 0 0 1 0 −5 3 1
x4 0 0 0 1 1 −3 1
x1 1 0 0 0 1 −1 1
x2 0 1 0 0 1 0 1

Both x1 and x2 are integers. Thus we get the optimal integer solution (x1, x2)T = (1, 1)T .
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