ACM 113 Introduction to Optimization - Problem Set 6

Ling Li, ling@cs.caltech.edu

June 5, 2001
6.1 Linear programming. Let the Lagrange multipliers $\lambda=\binom{y}{s}$, where y is for constraints $A x-b=0$ and s for $x \geq 0$. Then the Lagrangian function is

$$
\mathcal{L}(x, \lambda) \equiv c^{T} x-y^{T}(A x-b)-s^{T} x .
$$

For optimal pair $\left(x^{*}, \lambda^{*}\right)$, the 1st order KKT conditions are

$$
\begin{aligned}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=c-A^{T} y^{*}-s^{*} & =0 \\
s^{*} & \geq 0 \\
s_{i}^{*} x_{i}^{*} & =0, \quad \forall i \in \mathcal{I} .
\end{aligned}
$$

For feasible point x^{*} satisfying above conditions, x^{*} must be an optimal solution since the above conditions, together with feasibility conditions, constitute the primal-dual LP optimality conditions: $A^{T} y+s=c, A x=b, x \geq 0, s \geq 0$, and $x^{T} s=0$.
Trust region subproblem. The problem is to minimize $m_{k}(p)=f_{k}+\nabla f_{k}^{T} p+\frac{1}{2} p^{T} B_{k} p$ subject to $\|p\| \leq \Delta_{k}$, where B_{k} is symmetric but not necessarily positive definite. The constraint can be written as

$$
c(p)=\Delta_{k}^{2}-p^{T} p \geq 0
$$

Thus the Lagrangian function is

$$
\mathcal{L}(p, \lambda) \equiv f_{k}+\nabla f_{k}^{T} p+\frac{1}{2} p^{T} B_{k} p-\lambda\left(\Delta_{k}^{2}-p^{T} p\right) .
$$

The 1st order KKT conditions for optimal pair $\left(p^{*}, \lambda^{*}\right)$ are

$$
\begin{aligned}
\nabla_{p} \mathcal{L}\left(p^{*}, \lambda^{*}\right)=\nabla f_{k}+B_{k} p^{*}+2 \lambda^{*} p^{*} & =0, \\
\lambda^{*} & \geq 0, \\
\lambda^{*}\left(\Delta_{k}^{2}-p^{* T} p^{*}\right) & =0 .
\end{aligned}
$$

If B_{k} is positive definite, and $\left\|B_{k}^{-1} \nabla f_{k}\right\| \leq \Delta_{k}$, then $p^{*}=-B_{k}^{-1} \nabla f_{k}$ and $\lambda^{*}=0$ satisfy the above conditions.
6.2 Let x_{1} and x_{2} denote the length and width of the rectangle. The perimeter is $2\left(x_{1}+x_{2}\right)$. The problem is formulated as

$$
\begin{align*}
\min & f(x)=-2\left(x_{1}+x_{2}\right), \\
\text { subject to } & x_{1}, x_{2} \geq 0, \tag{1}\\
& x_{1}^{2}+x_{2}^{2}-16=0 \tag{2}
\end{align*}
$$

The Lagrangian function is

$$
\mathcal{L}(x, \lambda) \equiv-2\left(x_{1}+x_{2}\right)-\lambda_{1} x_{1}-\lambda_{2} x_{2}-\lambda_{3}\left(x_{1}^{2}+x_{2}^{2}-16\right) .
$$

From the 1st order KKT conditions, the optimal $\left(x^{*}, \lambda^{*}\right)$ satisfies

$$
\begin{aligned}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\binom{-2-\lambda_{1}^{*}-2 \lambda_{3}^{*} x_{1}^{*}}{-2-\lambda_{2}^{*}-2 \lambda_{3}^{*} x_{2}^{*}} & =0, \\
\lambda_{1}^{*} x_{1}^{*}=\lambda_{2}^{*} x_{2}^{*} & =0, \\
\lambda_{1}^{*}, \lambda_{2}^{*} & \geq 0 .
\end{aligned}
$$

Thus $0=\left(-2-\lambda_{1}^{*}-2 \lambda_{3}^{*} x_{1}^{*}\right) \lambda_{1}^{*}=-\lambda_{1}^{*}\left(\lambda_{1}^{*}+2\right)$, i.e., $\lambda_{1}^{*}=0$. Similarly, $\lambda_{2}^{*}=0$. So $x_{1}^{*}=x_{2}^{*}=-\frac{1}{\lambda_{3}^{*}}$. From constraints (1) and (2), we have $x_{1}^{*}=x_{2}^{*}=2 \sqrt{2}$, and $\lambda_{3}^{*}=-\frac{1}{2 \sqrt{2}}$. We can verify the optimality since

$$
\nabla_{x x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\left(\begin{array}{cc}
-2 \lambda_{3}^{*} & 0 \\
0 & -2 \lambda_{3}^{*}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

is positive definite.
Among constraints for the original problem, only (2) is active. Consider the perturbed problem

$$
\begin{aligned}
\min & f(x)=-2\left(x_{1}+x_{2}\right) \\
\text { subject to } & x_{1}^{2}+x_{2}^{2}-16=\epsilon
\end{aligned}
$$

For $|\epsilon|$ small enough, the optimal solution is $x_{1}^{*}(\epsilon)=x_{2}^{*}(\epsilon)=\sqrt{\frac{16+\epsilon}{2}}$. The primal function is

$$
p(\epsilon)=f\left(x^{*}(\epsilon)\right)=-4 \sqrt{\frac{16+\epsilon}{2}}
$$

The derivative of $p(\epsilon)$ is

$$
\nabla p(\epsilon)=-\sqrt{\frac{2}{16+\epsilon}} .
$$

Thus $\nabla p(0)=-\frac{1}{2 \sqrt{2}}=\lambda_{3}^{*}$.
6.3 Write the problem in the form of constrained nonlinear programming:

$$
\begin{aligned}
\min & f(x)=-\pi h^{2}(r-h / 3) \\
\text { subject to } & c_{1}(x)=2 \pi r h-S=0 \\
& c_{2}(x)=r \geq 0 \\
& c_{3}(x)=h \geq 0
\end{aligned}
$$

where $x=(r, h)^{T}$, and $S>0$ is the required spherical area. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)^{T}$ denote the Lagrange multipliers. The Lagrangian function is

$$
\mathcal{L}(x, \lambda) \equiv f(x)-\lambda^{T} c(x)=-\pi h^{2}(r-h / 3)-\lambda_{1}(2 \pi r h-S)-\lambda_{2} r-\lambda_{3} h .
$$

From the 1 st order KKT conditions, the optimal pair $\left(x^{*}, \lambda^{*}\right)$ satisfies

$$
\begin{aligned}
\nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\binom{-\pi h^{*}\left(h^{*}+2 \lambda_{1}^{*}\right)-\lambda_{2}^{*}}{\pi h^{* 2}-2 \pi h^{*} r^{*}-2 \pi \lambda_{1}^{*} r^{*}-\lambda_{3}^{*}} & =0 \\
\lambda_{2}^{*}, \lambda_{3}^{*} & \geq 0 \\
\lambda_{2}^{*} r^{*}=\lambda_{3}^{*} h^{*} & =0
\end{aligned}
$$

and $c_{1}\left(x^{*}\right)=2 \pi r^{*} h^{*}-S=0$. Since $S>0$, we get $r^{*}>0, h^{*}>0$. Thus $\lambda_{2}^{*}=\lambda_{3}^{*}=0$. Only c_{1} is active. Then we get $r^{*}=h^{*}=-2 \lambda_{1}^{*}=\sqrt{\frac{S}{2 \pi}}$.
We also have

$$
\nabla_{x x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\left(\begin{array}{cc}
0 & -2 \pi\left(h^{*}+\lambda_{1}^{*}\right) \\
-2 \pi\left(h^{*}+\lambda_{1}^{*}\right) & 2 \pi\left(h^{*}-r^{*}\right)
\end{array}\right)=\left(\begin{array}{cc}
0 & -\pi h^{*} \\
-\pi h^{*} & 0
\end{array}\right)
$$

For any 1st order feasible direction $d=\left(d_{r}, d_{h}\right)^{T}$ such that $d \neq 0$, and

$$
\nabla c_{1}\left(x^{*}\right)^{T} d=2 \pi h^{*} d_{r}+2 \pi r^{*} d_{h}=0
$$

we have $d_{r}=-d_{h} \neq 0$. Thus

$$
d^{T} \nabla_{x x} \mathcal{L}\left(x^{*}, \lambda^{*}\right) d=-2 \pi h^{*} d_{r} d_{h}=\sqrt{2 \pi S} d_{h}^{2}>0
$$

Hence (from the sufficient conditions) $r^{*}=h^{*}=\sqrt{\frac{S}{2 \pi}}$ is the only strict local minimizer, and thus maximizes the segment volume (the maximum is $\left.\frac{2 \pi}{3}\left(\sqrt{\frac{S}{2 \pi}}\right)^{3}=\frac{S^{3 / 2}}{3 \sqrt{2 \pi}}\right)$.
6.4 The logarithmic barrier method solves the unconstrained problem

$$
\begin{equation*}
x(\mu)=\arg \min _{x} B(x, \mu)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}-\mu \ln \left(x_{1}+x_{2}-1\right) \tag{3}
\end{equation*}
$$

and seeks convergence as $\mu \downarrow 0$. To solve (3), let

$$
\nabla_{x} B(x, \mu)=\binom{x_{1}-\frac{\mu}{x_{1}+x_{2}-1}}{x_{2}-\frac{\mu}{x_{1}+x_{2}-1}}=0
$$

Since $x_{1}+x_{2} \geq 1$, we get $x_{1}=x_{2}=\frac{1+\sqrt{1+8 \mu}}{4}$. Thus when $\mu \downarrow 0$,

$$
x(\mu)=\left(\frac{1+\sqrt{1+8 \mu}}{4}, \frac{1+\sqrt{1+8 \mu}}{4}\right)^{T} \rightarrow\left(\frac{1}{2}, \frac{1}{2}\right)^{T}
$$

The Lagrange multiplier estimate is defined as

$$
\lambda(\mu)=\frac{\mu}{c(x(\mu))}=\frac{\mu}{\frac{1+\sqrt{1+8 \mu}}{2}-1}=\frac{1+\sqrt{1+8 \mu}}{4}
$$

Thus $\lambda(\mu) \rightarrow \frac{1}{2}$ when $\mu \downarrow 0$. So we get $x^{*}=\left(\frac{1}{2}, \frac{1}{2}\right)^{T}$ and $\lambda^{*}=\frac{1}{2}$.
The Hessian of $B(x, \mu)$ is

$$
\nabla_{x x} B(x, \mu)=\left(\begin{array}{cc}
1+\frac{\mu}{\left(x_{1}+x_{2}-1\right)^{2}} & \frac{\mu}{\left(x_{1}+x_{2}-1\right)^{2}} \\
\frac{\mu}{\left(x_{1}+x_{2}-1\right)^{2}} & 1+\frac{x^{2}}{\left(x_{1}+x_{2}-1\right)^{2}}
\end{array}\right)
$$

The condition number of the Hessian is

$$
\kappa=1+\frac{2 \mu}{\left(x_{1}+x_{2}-1\right)^{2}} .
$$

For the Hessian at $x(\mu)$, the condition number is

$$
\kappa(\mu)=1+\frac{2 \mu}{\left(\frac{1+\sqrt{1+8 \mu}}{2}-1\right)^{2}}=1+\frac{1}{2 \mu}\left(\frac{1+\sqrt{1+8 \mu}}{2}\right)^{2} .
$$

When μ is very close to $0, \kappa(\mu) \approx \frac{1}{2 \mu}$ becomes very large, and $\kappa(\mu) \rightarrow+\infty$ when $\mu \downarrow 0$.
6.5 $f(x)=\frac{1}{2} x^{T} Q x+\theta b^{T} x$ and $c(x)=b^{T} x=0$.

- Since Q is positive definite on the subspace $b^{T} x=0$, the optimal solution is $x^{*}=0$. Thus $\nabla f\left(x^{*}\right)=Q x^{*}+\theta b=\theta b, \nabla c\left(x^{*}\right)=b$. So $\lambda^{*}=\theta$.
- The augmented Lagrangian for this problem is $(a>0)$

$$
\begin{equation*}
\mathcal{L}_{a}(x, \lambda) \equiv f(x)-\lambda^{T} c(x)+\frac{a}{2}\|c(x)\|^{2}=\frac{1}{2} x^{T}\left(Q+a b b^{T}\right) x+(\theta-\lambda) b^{T} x . \tag{4}
\end{equation*}
$$

For $\lambda=\lambda_{k} \neq \theta$, if (4) has a minimum, $Q+a b b^{T}$ must be invertible.* Then from

$$
\left(Q+a b b^{T}\right) Q^{-1} b=b+a b b^{T} Q^{-1} b=\left(1+a b^{T} Q^{-1} b\right) b,
$$

we have $Q^{-1} b=\left(1+a b^{T} Q^{-1} b\right)\left(Q+a b b^{T}\right)^{-1} b$. Also from $Q Q^{-1} b=b \neq 0$, we know $Q^{-1} b \neq 0$. Thus $1+a b^{T} Q^{-1} b \neq 0$, and

$$
\left(Q+a b b^{T}\right)^{-1} b=\frac{Q^{-1} b}{1+a b^{T} Q^{-1} b} .
$$

The 1st order condition $\nabla_{x} \mathcal{L}_{a}\left(x_{k}, \lambda_{k}\right)=\left(Q+a b b^{T}\right) x_{k}+\left(\theta-\lambda_{k}\right) b=0$ gives

$$
\begin{equation*}
x_{k}=\left(\lambda_{k}-\theta\right)\left(Q+a b b^{T}\right)^{-1} b=\frac{\left(\lambda_{k}-\theta\right) Q^{-1} b}{1+a b^{T} Q^{-1} b} . \tag{5}
\end{equation*}
$$

So, if (4) has a minimum for $\lambda_{k} \neq \theta$, it is given by (5). (If $\lambda_{k}=\theta$, there may be many minimizers.)

- We would prove

$$
\begin{equation*}
x_{k}=-\frac{\theta Q^{-1} b}{\left(1+a b^{T} Q^{-1} b\right)^{k}}, \quad \lambda_{k}=-\theta\left[\frac{1}{\left(1+a b^{T} Q^{-1} b\right)^{k-1}}-1\right], \tag{6}
\end{equation*}
$$

by induction. For $k=1$, by initialization, $\lambda_{1}=0 \neq \theta$, and by (5),

$$
x_{1}=\frac{(0-\theta) Q^{-1} b}{1+a b^{T} Q^{-1} b}=-\frac{\theta Q^{-1} b}{1+a b^{T} Q^{-1} b} .
$$

[^0]So (6) holds for $k=1$.
Suppose (6) holds for k. Then we estimate the multiplier as

$$
\begin{aligned}
\lambda_{k+1} & \equiv \lambda_{k}-a \cdot c\left(x_{k}\right) \\
& =-\theta\left[\frac{1+a b^{T} Q^{-1} b}{\left(1+a b^{T} Q^{-1} b\right)^{k}}-1\right]+a b^{T} \frac{\theta Q^{-1} b}{\left(1+a b^{T} Q^{-1} b\right)^{k}} \\
& =-\theta\left[\frac{1}{\left(1+a b^{T} Q^{-1} b\right)^{k}}-1\right] .
\end{aligned}
$$

We still have $\lambda_{k+1} \neq \theta$. Then by (5),

$$
x_{k+1}=\frac{\frac{-\theta}{\left(1+a b^{T} Q^{-1} b\right)^{k}} Q^{-1} b}{1+a b^{T} Q^{-1} b}=-\frac{\theta Q^{-1} b}{\left(1+a b^{T} Q^{-1} b\right)^{k+1}} .
$$

So (6) also holds for $k+1$.

- The convergences of x_{k} to x^{*} and λ_{k} to λ^{*} require $\left|1+a b^{T} Q^{-1} b\right|>1$. If $b^{T} Q^{-1} b>0$, a can be any positive number; if $b^{T} Q^{-1} b<0$, then $a>-\frac{2}{b^{T} Q^{-1} b}$; if $b^{T} Q^{-1} b=0$, no a satisfies the convergence requirement. If x_{k}, λ_{k} converge, the larger a is, the faster they converge. However, since a is fixed, the convergence rate is always linear.
6.6 Underneath idea: Let $y^{(k)}, s^{(k)}$ be the feasible pair at step k for the dual problem. Let B, N represent basic and nonbasic variables for the primal problem. From $A^{T} y+s=c$,

$$
s_{N}=c_{N}-\left(B^{-1} N\right)^{T}\left(c_{B}-s_{B}\right)
$$

For step k, we have $s_{N}^{(k)} \geq 0, s_{B}^{(k)}=0$, and $s_{N}^{(k)}=c_{N}-\left(B^{-1} N\right)^{T} c_{B}$. So

$$
\begin{equation*}
s_{N}=s_{N}^{(k)}+\left(B^{-1} N\right)^{T} s_{B} \tag{7}
\end{equation*}
$$

If $x_{p}(p \in B)$ is a variable that doesn't satisfy the feasible condition for the primal problem, that is, $x_{p}<0$, we need to find another variable $x_{q}(q \in N)$ to replace x_{p} in the basis. Since

$$
\begin{equation*}
s_{B}^{(k+1)}=\left(0, \ldots, 0, s_{p}^{(k+1)}, 0, \ldots, 0\right), \tag{8}
\end{equation*}
$$

denoting row p of $B^{-1} N$ by t, from (7) we get

$$
\begin{equation*}
s_{N}^{(k+1)}=s_{N}^{(k)}+t^{T} s_{p}^{(k+1)} \tag{9}
\end{equation*}
$$

If $t \geq 0$, then $s_{p}^{(k+1)}$ is unbounded, and the primal problem is infeasible. Otherwise, since we need to maintain $s^{(k+1)} \geq 0, s_{p}^{(k+1)}$ should satisfy

$$
s_{p}^{(k+1)}=\min _{\substack{i \in N \\ t_{i}<0}}\left\{-\frac{s_{i}^{(k)}}{t_{i}}\right\} .
$$

Algorithm: Suppose initially there exists an initial dual-feasible pair $y^{(0)}, s^{(0)} . B$ and N represent the basic and nonbasic variables. $k=0$.
(a) Calculate $x_{B}=B^{-1} b$. If $x_{B} \geq 0$, do optimal print and stop.
(b) Select $p \in B$ with $x_{p}<0$. Calculate $t=\left(B^{-1} N\right)_{\text {row } p}$, or $t=\left(B^{-1}\right)_{\text {row } p} N$.
(c) If $t \geq 0$, the primal problem is infeasible. Stop.
(d) Calculate

$$
q=\arg \min _{\substack{i \in N \\ t_{i}<0}}\left\{-\frac{s_{i}^{(k)}}{t_{i}}\right\}
$$

and $s_{p}^{(k+1)}=-\frac{s_{q}^{(k)}}{t_{q}}$. Update s using (8) and (9). Update B, N by removing p and adding q to B.
(e) $k \leftarrow k+1$. Goto (a).

Example. For LP in the problem, add two surplus variables x_{3} and x_{4}. The LP becomes

$$
\begin{aligned}
\min & z=5 x_{1}+4 x_{2} \\
\text { subject to } & 4 x_{1}+3 x_{2}-x_{3}=10 \\
& 3 x_{1}-5 x_{2}-x_{4}=12 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

Consider the initial basis $x_{B}=\left(x_{3}, x_{4}\right)^{T}$. Multiplying the constraints by -1 , we obtain

basic	x_{1}	x_{2}	x_{3}	x_{4}	rhs
$-z$	5	4	0	0	0
x_{3}	-4	-3	1	0	-10
x_{4}	-3	5	0	1	-12

\rightarrow| basic | x_{1} | x_{2} | x_{3} | x_{4} | rhs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $-z$ | 0 | $\frac{37}{3}$ | 0 | $\frac{5}{3}$ | -20 |
| x_{3} | 0 | $-\frac{29}{3}$ | 1 | $-\frac{4}{3}$ | 6 |
| x_{1} | 1 | $-\frac{5}{3}$ | 0 | $-\frac{1}{3}$ | 4 |

Thus the optimal solution is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}=(4,0,6,0)^{T}$ and the objective is 20.
6.7 The feasible set of the original integer linear program is shown in Figure 1(a). From the figure, the optimal continuous solution is $x=\left(1, \frac{3}{2}\right)^{T}$, with objective $-\frac{3}{2}$; and the optimal integer solution is $x=(1,1)^{T}$, with objective -1 .

Introduce x_{3} and x_{4} as slack variables. The relaxation LP problem is

$$
\begin{align*}
\min & z=-x_{2} \\
\text { subject to } & 3 x_{1}+2 x_{2}+x_{3}=6 \tag{10}\\
& -3 x_{1}+2 x_{2}+x_{4}=0 \tag{11}\\
& x \geq 0
\end{align*}
$$

Start from basis $\left(x_{3}, x_{4}\right)^{T}$, we get

The continuous solution is $\left(x_{1}, x_{2}\right)^{T}=\left(1, \frac{3}{2}\right)^{T}$, where x_{2} is not an integer. Consider row 2 of $B^{-1} N$ (the last row of the above table), we get $d_{23}=d_{24}=\frac{1}{4}$ and $d_{20}=\frac{3}{2}$. From $f_{2 j} \equiv d_{2 j}-\left\lfloor d_{2 j}\right\rfloor$, the Gomory cut is

$$
\begin{equation*}
\frac{1}{4} x_{3}+\frac{1}{4} x_{4} \geq \frac{1}{2} . \tag{12}
\end{equation*}
$$

Since (10) plus (11) gives $4 x_{2}+x_{3}+x_{4}=6,(12)$ is equivalent to

$$
\begin{equation*}
x_{2} \leq 1 . \tag{13}
\end{equation*}
$$

The feasible set (on the $x_{1}-x_{2}$ plane) after this cut is in Figure 1(b).
Introduce slack variable x_{5}. Then (13) becomes another constraint:

$$
\begin{equation*}
x_{2}+x_{5}=1 . \tag{14}
\end{equation*}
$$

Now the relaxation LP problem is solved as

Figure 1: Feasible sets (shadows) of the relaxation LP problems. Red circles are integer pointers.

basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	rhs		basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	rhs
-z	0	-1	0	0	0	0	\rightarrow	-z	$-\frac{3}{2}$	0	0	$\frac{1}{2}$	0	0
x_{3}	3	2	1	0	0	6		x_{3}	6	0	1	-1	0	6
x_{4}	-3	2	0	1	0	0		x_{2}	$-\frac{3}{2}$	1	0	$\frac{1}{2}$	0	0
x_{5}	0	1	0	0	1	1		x_{5}	$\frac{3}{2}$	0	0	$-\frac{1}{2}$	1	1
								\downarrow						
								basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	rhs
								-z	0	0	0	0	1	1
								x_{3}	0	0	1	1	-4	2
								x_{2}	0	1	0	0	1	1
								x_{1}	1	0	0	$-\frac{1}{3}$	2	$\frac{2}{3}$

$x_{1}=\frac{2}{3}$ is not an integer. Consider row 1 of $B^{-1} N$ (the last row of the above table), we get $d_{14}=-\frac{1}{3}, d_{15}=\frac{2}{3}$, and $d_{10}=\frac{2}{3}$. Thus the Gomory cut is

$$
\begin{equation*}
\frac{2}{3} x_{4}+\frac{2}{3} x_{5} \geq \frac{2}{3} . \tag{15}
\end{equation*}
$$

Since (11) plus (14) gives $-3 x_{1}+3 x_{2}+x_{4}+x_{5}=1$, (15) is equivalent to

$$
\begin{equation*}
-x_{1}+x_{2} \leq 0 . \tag{16}
\end{equation*}
$$

The feasible set (on the $x_{1}-x_{2}$ plane) after this second cut is in Figure 1(c).
Introduce slack variable x_{6}. Then (16) becomes constraint

$$
\begin{equation*}
-x_{1}+x_{2}+x_{6}=0 \tag{17}
\end{equation*}
$$

With (17), the relaxation LP problem now is solved as

basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs	\rightarrow	basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs
-z	0	-1	0	0	0	0	0		-z	-1	0	0	0	0	1	0
x_{3}	3	2	1	0	0	0	6		x_{3}	5	0	1	0	0	-2	6
x_{4}	-3	2	0	1	0	0	0		x_{4}	-1	0	0	1	0	-2	0
x_{5}	0	1	0	0	1	0	1		x_{5}	1	0	0	0	1	-1	1
x_{6}	-1	1	0	0	0	1	0		x_{2}	-1	1	0	0	0	1	0
									\downarrow							
									basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	rhs
									-z	0	0	0	0	1	0	1
									x_{3}	0	0	1	0	-5	3	1
									x_{4}	0	0	0	1	1	-3	1
									x_{1}	1	0	0	0	1	-1	1
									x_{2}	0	1	0	0	1	0	1

Both x_{1} and x_{2} are integers. Thus we get the optimal integer solution $\left(x_{1}, x_{2}\right)^{T}=(1,1)^{T}$.

[^0]: *Otherwise there exists $\hat{x} \neq 0$ such that $\left(Q+a b b^{T}\right) \hat{x}=0$. Since Q is positive definite on the subspace $b^{T} x=0$, if $b^{T} \hat{x}=0, \hat{x}^{T}\left(Q+a b b^{T}\right) \hat{x}=\hat{x}^{T} Q \hat{x}>0$, contradicting $\left(Q+a b b^{T}\right) \hat{x}=0$. So $b^{T} \hat{x} \neq 0$. Thus $\mathcal{L}_{a}\left(k \hat{x}, \lambda_{k}\right)=k\left[\left(\theta-\lambda_{k}\right) b^{T} \hat{x}\right]$, where k is a scalar. Clearly \mathcal{L}_{a} has no minimum.

