ACM 113 Introduction to Optimization - Problem Set 6

Ling Li, 1ling@cs.caltech.edu

June 5, 2001

6.1 Linear programming. Let the Lagrange multipliers A = (z), where y is for constraints Ax—b =0
and s for x > 0. Then the Lagrangian function is

Lz, N =cle -yl (A —b) — T
For optimal pair (z*, \*), the 1st order KKT conditions are
VoL(z* \N)=c— ATy* —s* =

%*
Y

0,
0,
siz; = 0, Viel.

For feasible point z* satisfying above conditions, * must be an optimal solution since the
above conditions, together with feasibility conditions, constitute the primal-dual LP optimality
conditions: ATy+s=¢, Ar=b,2>0,5>0,and 27s = 0.

Trust region subproblem. The problem is to minimize my(p) = fi + kaTp + %pTka subject
to ||p|| < Ag, where By is symmetric but not necessarily positive definite. The constraint can
be written as

o(p) =AF—p'p>0.
Thus the Lagrangian function is
1
L(p.A) = fu + VIip+ 50" Bep — MAL —p'p).
The 1st order KKT conditions for optimal pair (p*, \*) are

Vo L(p*, X\*) =V fi + Bgp™ +2X"p" = 0,
A\
)\*(Az—p*Tp*) —

v

If By, is positive definite, and HkalkaH < Ayg, then p* = —B,;1ka and A" = 0 satisfy the
above conditions.

6.2 Let x1 and zo denote the length and width of the rectangle. The perimeter is 2(z1 + x2). The
problem is formulated as

min f(z) = =2(z1 + x2),
subject to r1,T9 > 0, (1)
2+ 23 —16 =0. (2)



6.3

The Lagrangian function is
L(z,\) = =2(x1 + 22) — M21 — dazo — A3(xF + 23 — 16).

From the 1st order KKT conditions, the optimal (z*, \*) satisfies

)

Vxﬁ(a:*, )\*) _ <_2 - )‘1 - 2)‘3561)

—2 = N5 — 2N
Azl =X a5 = 0,

LA > 0.

Thus 0 = (—2—A] —2X\5z7)A] = —=AJ(A]+2), i.e., A] = 0. Similarly, A5 = 0. So 2] = 25 = —/\%.

From constraints (1) and (2), we have z} = x5 = 2/2, and \} = —21—2. We can verify the
optimality since
1
—ONE —= 0
coen-(35 2)-(¥ 1)
—2A3 V2

is positive definite.

Among constraints for the original problem, only (2) is active. Consider the perturbed problem

min  f(z) = ~2(a1 +22),
subject to % + 23 — 16 = e.

For [e| small enough, the optimal solution is z7(¢) = z3(¢) = y/~5<. The primal function is

16 + €

ple) = fa™(e)) = —4/ ——

Vp(e) = —\/MTJFG-

Write the problem in the form of constrained nonlinear programming:

The derivative of p(e) is

Thus Vp(0) = —ﬁ = A3

min  f(z) = —wh%(r — h/3)
subject to  ¢1(z) =2nrh — S =0,
co(x) =r>0,
cs(x) =h >0,

where = (r,h)T, and S > 0 is the required spherical area. Let A = (A1, A2, A3)T denote the
Lagrange multipliers. The Lagrangian function is

L(z,\) = f(x) = Ae(z) = —nh?(r — h/3) — M\ (27rh — S) — Aor — Ash.



6.4

From the 1st order KKT conditions, the optimal pair (z*, \*) satisfies
—mh* (B + 2X%) — A%
Th*? — 2mh*rs — 2w\ — A}
A3, A3
sr = MAh* = 0,

Vo L(z*, \*) = <

and ¢ (z*) = 2mr*h* — S = 0. Since S > 0, we get 7* > 0, h* > 0. Thus A5 = A\; = 0. Only ¢;
is active. Then we get r* = h* = —2)\] = w/%.

We also have

e 0 (A [ 0 —mh*
Vazl{z™, A7) = < =2n(h* + AY)  2m(h* —r¥) > N < —mh* 0 )

For any 1st order feasible direction d = (d,.,dj,)” such that d # 0, and
Ve (29)Td = 2nh*d, 4 2rr*d), = 0,
we have d. = —dp, # 0. Thus
ATV oo L(z*, N)d = —2nh*d,dy, = V21 Sd? > 0.

Hence (from the sufficient conditions) r* = h* = % is the only strict local minimizer, and

3
.. . . 3/2
thus maximizes the segment volume (the maximum is 2% (\ / %) = :f \/;—ﬂ)

The logarithmic barrier method solves the unconstrained problem

1 1
() = sgmin B, ) = 5af + 503 — pln(ar +a2 = 1) 3

and seeks convergence as | 0. To solve (3), let

R
va('r:M) = ( L1 Il'f‘ﬁz—l ) —0.

T2 — xr1+x2—1

Since 1 + x9 > 1, we get ©1 = 29 = LHv1i+8u ”i%“. Thus when p | 0,

1+I+80 1+vI+8u\" /1 1\”
) = TR 4 “\22) -

The Lagrange multiplier estimate is defined as

) = oo I :1—0-\/1—1—8/1
Ca() | T T

Thus A\(u) — % when p | 0. So we get z* = (%, %)T and \* = %
The Hessian of B(x, i) is

1+ B 2
VMB(x,,u) = ( (Ilij*UQ (w1+x2;1)2 ) .

(z1+22—1)2 1+ (z1+22—1)2

3



The condition number of the Hessian is

2p

k=1+—
(x1+a:2—1)2

For the Hessian at z:(u), the condition number is

_, 24 (VTR
R(p) =1+ p=ltg (—5— )
(1-1-\/1-&-8“ _ 1) 7 2

2

When p is very close to 0, k() ~ ﬁ becomes very large, and k(u) — +oo when p | 0.
6.5 f(z) = 327Qz + 6bTz and c(z) = bTz = 0.
e Since (Q is positive definite on the subspace b’z = 0, the optimal solution is z* = 0. Thus
Vf(z*) = Qx* 4+ 6b=0b, Vc(z*) =b. So A* = 6.
e The augmented Lagrangian for this problem is (a > 0)

Lo(z,\) = f(z) = Me(z) + % e(z)|)? = %xT(Q + abb" )z + (0 — N z. (4)

For A\ = A # 0, if (4) has a minimum, Q + abb” must be invertible.* Then from
(Q+abbD)Q b =b+abb’ Q76 = (1 + ab? Q7 'b)b,

we have Q70 = (1 4 ab” Q7 'b)(Q + abb”)™'b. Also from QQ~'b = b # 0, we know
Q7 'b#0. Thus 1 4+ ab” Qb # 0, and

Q'

Y I S S c—
(@ +abb?) T+ ab’Q-1b

The 1st order condition VL (zk, \x) = (Q + abbl)zy + (0 — A\ )b = 0 gives

(A —0)Q"'d

zr = (A — 0)(Q+ abb”) b = =T

(®)
So, if (4) has a minimum for \; # 0, it is given by (5). (If Ay = 6, there may be many
minimizers.)

e We would prove
Qb 1

Tp = — . =0 -1/, 6
(1+ abTQ—1b)" (1+abTQ-1p)" ! ©)

by induction. For k = 1, by initialization, \; = 0 # 6, and by (5),

0—60)Q ' 0Q~1b
T = = — .
YT abTQ 1 1+ abTQ b
*Otherwise there exists & # 0 such that (Q 4 abb™)& = 0. Since Q is positive definite on the subspace b"z = 0, if
b'e =0, 27 (Q+abb” )& = 27 Q& > 0, contradicting (Q 4+ abb” )& = 0. So b" & # 0. Thus La(k&, \x) =k [(0 — Xx)b" ],
where k is a scalar. Clearly £, has no minimum.




So (6) holds for k = 1.
Suppose (6) holds for k. Then we estimate the multiplier as

Mer1 = M —a-c(zg)

1 b'Q~ 1 0Q b
+ab @ =1 + ab? @ -

(1+ abTQ1b) (1+ abTQ~1b)

1 —1
(14 abTQ~1b)" '

We still have A\;41 # 6. Then by (5),

—0 -1
. _ (1+abTQ—1b)kQ b _ Qb
k+1 — 1 + a]bTQ*lb - (1 + abTQ_lb)k+1 .

So (6) also holds for k + 1.

e The convergences of x; to x* and A\, to A\* require |1 + abTQ_lb{ > 1. IfFo'Q ' > 0,

a can be any positive number; if b7 Q'b < 0, then a > —ﬁ; if 57Q'» =0, no a

satisfies the convergence requirement. If xj, Ap converge, the larger a is, the faster they
converge. However, since a is fixed, the convergence rate is always linear.

6.6 Underneath idea: Let y®), s(*) be the feasible pair at step k for the dual problem. Let B, N
represent basic and nonbasic variables for the primal problem. From ATy + s = ¢,

SN =CN — (BilN)T(CB — SB).
For step k, we have sgl\;) >0, sg;) =0, and sg\’f) =cN — (Ble)TcB. So

sy = s 4+ (BIN) sp. (7)

If 2, (p € B) is a variable that doesn’t satisfy the feasible condition for the primal problem,
that is, x, < 0, we need to find another variable z, (¢ € N) to replace z, in the basis. Since

s@ = (0,...,0,s0% D 0,... ,0), (8)
denoting row p of B~'N by t, from (7) we get

ss\]fﬂ) = sgl\;) + th]()kH). (9)

If t > 0, then sékﬂ) is unbounded, and the primal problem is infeasible. Otherwise, since we

need to maintain s+ >0, 51()k+1) should satisfy
e
sUHD — min { -2 .
p 1€EN t;
t; <0

Algorithm: Suppose initially there exists an initial dual-feasible pair y(?, s©. B and N
represent the basic and nonbasic variables. k = 0.



Calculate zgp = B~'b. If g > 0, do optimal print and stop.

)
b) Select p € B with x, < 0. Calculate t = (B™1N)yow p, or t = (B™1)1ow pN.
) If t > 0, the primal problem is infeasible. Stop.

)

Calculate

sF)
= argmin{ ——
g 1€EN t; ’
t; <0
(k+1)

(k)
and s = —Stq—q. Update s using (8) and (9). Update B, N by removing p and adding
q to B.

(e) k— k+1. Goto (a).

Ezxample. For LP in the problem, add two surplus variables x3 and x4. The LP becomes

min z = 5x1 + 42
subject to 4x1 + 3x2 — x3 = 10,
3.1?1 — 5:(:2 — Xy = 12,

x1,22,73,24 > 0.

Consider the initial basis 25 = (23, 24)”. Multiplying the constraints by —1, we obtain

basic 3 r9 3 x4 rhs basic x1 x2 x3 x4 rhs
-z 5 4 0 0 0 -z 0 ¥ 0 3 -20
—
z3 -4 -3 1 0 -10 xz3 0 -2 1 -3 6
xg |3 5 0 1 -12 <« v 1 =2 0 -3 4

Thus the optimal solution is (x1,z2, 23, 24)" = (4,0,6,0)” and the objective is 20.

6.7 The feasible set of the original integer linear program is shown in Figure 1(a). From the figure,
the optimal continuous solution is z = (1, %)T, with objective —%; and the optimal integer
solution is x = (1,1)”, with objective —1.

Introduce z3 and x4 as slack variables. The relaxation LP problem is

min zZ = —I9
subject to  3x1 + 2x9 + 23 = 6, (10)
=31+ 222 + 24 =0, (11)
x> 0.

Start from basis (z3,74)7, we get



basic x1 x99 3 x4 rhs basic 9 x3 x4 rhs

4
x
_3
2 2
xz3 3 2 1 0 6 3 [6] 0 1 -1
3
2

basic x1 x2 x3 x4 rhs
1 1 3
-z 0 i 13
1 1
11 3
The continuous solution is (z1,22)7 = (1,3)7, where z is not an integer. Consider row

2 of B™!N (the last row of the above table), we get dog = day = i and dyy = % From
f2j = doj — |daj], the Gomory cut is

4l sl (12)
TR )
Since (10) plus (11) gives 4x9 + x5 + x4 = 6, (12) is equivalent to
x9 < 1. (13)
The feasible set (on the x1-z2 plane) after this cut is in Figure 1(b).
Introduce slack variable z5. Then (13) becomes another constraint:
To + x5 = 1. (14)

Now the relaxation LP problem is solved as

(a) Original ILP (b) First cut (c) Second cut

Figure 1: Feasible sets (shadows) of the relaxation LP problems. Red circles are integer pointers.



[} \
basic x1 9 3 x4 x5 rhs basic x1 x2 23 x4 w5 ths
. 1 0 0 0 0 -z =3 0 0o L o0 o0
x3 2 1 0 0 6 - T3 6 0 1 -1 0 6
s -3 0 1 0 0 xa -3 1 0 § 0 0
zs 0 1 0 0 1 1 s (30 0 -3 1
|
basic x1 x2 x3 x4 x5 rhs
—z 0O 0 O 0 1 1
3 0 0 1 1 -4 2
T 0 1 0 0 1 1
xw 1 0 o - 2 2

x1 = % is not an integer. Consider row 1 of B™'N (the last row of the above table), we get

dig = —%, dis = %, and dig = % Thus the Gomory cut is
2 2 2
Zpat Cay > 2 1
31’4 + 3%’5 Z 3 ( 5)
Since (11) plus (14) gives —3x1 + 3z2 + x4 + x5 = 1, (15) is equivalent to
—x1 + 29 < 0. (16)

The feasible set (on the z1-z2 plane) after this second cut is in Figure 1(c).

Introduce slack variable zg. Then (16) becomes constraint
—x1 + 2 + 26 = 0. (17)

With (17), the relaxation LP problem now is solved as

4 .
basic x1 x9 3 x4 x5 g rhs basic x1 x2 3 x4 x5 T Ths
—z -1 0 0 0 0 O -z -1 0 0 0 0 1 0
x3 2 1 0 0 0 6 — x3 5 0 1 0 0 -2 6
gy -3 2 0 1 0 0 0 x4 -1 0 0 1 0 -2 0
zs 0 1 0 0 1 0 1 5 0o 0 0 1 -1 1
z -1 [1] 0 0 0 1 0 zaz —-1 1 0 0 0 1 0
1
basic x1 x9 3 x4 x5 g rhs
-z 0 0 0 0 1 1
T3 0 0 1 0 =5 1
x4 0 0 0 1 1 -3 1
T 1 0 0 0 1 -1 1
To o 1 0 o0 1 0 1

Both z1 and x5 are integers. Thus we get the optimal integer solution (21, z2)" = (1,1)%.



