ACM 113 Introduction to Optimization - Problem Set 5

Ling Li, ling@cs.caltech.edu
May 21, 2001
5.1 From [N\&S, p.136], both basis $\left\{x_{1}, x_{2}, x_{7}\right\}$ and $\left\{x_{1}, x_{6}, x_{7}\right\}$ correspond to $x_{i}=0(i \neq 7)$ and $x_{7}=1$. Thus this problem is degenerate. Using lexicographic perturbation, we have

	\Downarrow							
basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	rhs
$-z$	$-\frac{3}{4}$	150	$-\frac{1}{50}$	6	0	0	0	0
x_{5}	$\frac{1}{4}$	-60	$-\frac{1}{25}$	9	1	0	0	ϵ_{0}
x_{6}	$\frac{1}{2}$	-90	$-\frac{1}{50}$	3	0	1	0	ϵ_{0}^{2}
x_{7}	0	0	1	0	0	0	1	$1+\epsilon_{0}^{3}$
			\Downarrow					
basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	rhs
$-z$	0	15	$-\frac{1}{20}$	$\frac{21}{2}$	0	$\frac{3}{2}$	0	$\frac{3}{2} \epsilon_{0}^{2}$
x_{5}	0	-15	$-\frac{3}{100}$	$\frac{15}{2}$	1	$-\frac{1}{2}$	0	$\epsilon_{0}-\frac{1}{2} \epsilon_{0}^{2}$
x_{1}	1	-180	$-\frac{1}{25}$	6	0	2	0	$2 \epsilon_{0}^{2}$
x_{7}	0	0	1	0	0	0	1	$1+\epsilon_{0}^{3}$
basic	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	
$-z$	0	15	0	$\frac{21}{2}$	0	$\frac{3}{2}$	$\frac{1}{20}$	$\frac{1}{20}+\frac{3}{2} \epsilon_{0}^{2}+\frac{1}{20} \epsilon_{0}^{3}$
x_{5}	0	-15	0	$\frac{15}{2}$	1	$-\frac{1}{2}$	$\frac{3}{100}$	$\frac{3}{100}+\epsilon_{0}-\frac{1}{2} \epsilon_{0}^{2}+\frac{3}{100} \epsilon_{0}^{3}$
x_{1}	1	-180	0	6	0	2	$\frac{1}{25}$	$\frac{1}{25}+2 \epsilon_{0}^{2}+\frac{1}{25} \epsilon_{0}^{3}$
x_{3}	0	0	1	0	0	0	1	$1+\epsilon_{0}^{3}$

The cycling doesn't occur, and the optimal feasible point we get is $\left(\frac{1}{25}, 0,1,0, \frac{3}{100}, 0\right)^{T}$, with objective $-\frac{1}{20}$.
5.2 [N\&S, p.166-167] gives the optimal solution $x_{B}=\left(x_{2}, x_{1}, x_{3}\right)^{T}=(5,3,3)^{T}$.

$$
N=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right), B^{-1}=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 \\
1 & -\frac{1}{2} & \frac{3}{2}
\end{array}\right), c_{B}=\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right) .
$$

(a) Denote the change of b by $\Delta b=(\delta, 0,0)^{T}$. This change does not affect the optimality conditions. As long as the feasibility conditions

$$
\begin{equation*}
B^{-1}(b+\Delta b)=x_{B}+B^{-1} \Delta b \geq 0 \tag{1}
\end{equation*}
$$

remain satisfied, the current basis is still optimal. (1) is

$$
B^{-1} \Delta b=\left(\begin{array}{l}
0 \\
0 \\
\delta
\end{array}\right) \geq\left(\begin{array}{l}
-5 \\
-5 \\
-3
\end{array}\right)
$$

i.e., $\delta \geq-3$. So b_{1} can be decreased by at most 3 and can be increased by any (positive) value.
(b) Since

$$
\bar{x}_{B}=B^{-1}\left(b+(0,0,5)^{T}\right)=x_{B}+\left(\frac{5}{2}, 5, \frac{15}{2}\right)^{T}=\left(\frac{15}{2}, 8, \frac{21}{2}\right)^{T}>0,
$$

increasing b_{3} by 5 doesn't change the optimal basis. And the new solution is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}=$ $\left(8, \frac{15}{2}, \frac{21}{2}, 0\right)^{T}$, with objective $c_{B}^{T} \bar{x}_{B}=-23$.
(c) Denote the change of c_{B} by $\Delta c_{B}=(0, \delta, 0)^{T}$. The change of c_{B} only affects the optimal conditions.

$$
c_{N}^{T}-\left(c_{B}+\Delta c_{B}\right)^{T} B^{-1} N=\hat{c}_{N}^{T}-\Delta c_{B}^{T} B^{-1} N=(1,2)-(0, \delta) \geq 0 .
$$

Thus $\delta \leq 2$. So if c_{1} is increased or decreased by 2 , the solution doesn't change. However, the optimal objective changes by $\Delta c_{B}^{T} x_{B}=3 \delta$.
5.3 Since $s^{T} x=\sum_{i=1}^{n} x_{i} s_{i}=n \tau$, we have

$$
c^{T} x=\left(A^{T} y+s\right)^{T} x=y^{T}(A x)+s^{T} x=y^{T} b+n \tau
$$

i.e., $c^{T} x-b^{T} y=n \tau$.
5.4 During the iterates of the primal-dual Newton step, $A^{T} \Delta y+\Delta s=0$ and $A \Delta x=0$. Thus

$$
\Delta x^{T} \Delta s=\Delta x^{T}\left(-A^{T} \Delta y\right)=-(A \Delta x)^{T} \Delta y=0
$$

5.5 I programmed the primal-dual predictor-corrector method in Matlab.
(a) After 10 iterations, we get

$$
\begin{aligned}
x & =\left(0.65264,1.1737,2.1316,5.3053,2.257 \times 10^{-17}\right)^{T} \\
s & =\left(4.3299 \times 10^{-17}, 1.0776 \times 10^{-16}, 1.3619 \times 10^{-17}, 3.49 \times 10^{-17}, 1\right)^{T} \\
y & =\left(3.4001 \times 10^{-18},-1.7881 \times 10^{-17},-1\right)^{T} .
\end{aligned}
$$

The optimized objective is $c^{T} x=b^{T} y=-3$.
(b) The command used to verify my answer on larger LPs is

```
x = linprog(c, -eye(n), zeros(n,1), A, b);
```

- For $m=100, n=150$, my program typically took about 1.1 seconds ($16 \sim 17$ iterations) to achieve $n \mu_{k}<10^{-15}$. And the linprog usually took about 4.5 seconds to get the same result.
- For $m=500, n=650$, my program took about 40 seconds (around 20 iterations) to achieve $n \mu_{k}<10^{-15}$. The linprog usually can not get the result.

