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4.1 Let x and x′ be any two feasible points for the linear program problem. Hence

Ax = Ax′ = b, x ≥ 0, and x′ ≥ 0.

Let x(λ) = λx+ (1− λ)x′, where 0 ≤ λ ≤ 1. Thus x(λ) ≥ 0, and

Ax(λ) = λAx+ (1− λ)Ax′ = λb+ (1− λ)b = b.

So x(λ) is also a feasible point. Thus the feasible polytope is convex.

4.2 The claim in the problem is not true. For example,

A =
(

1 1
2 2

)
, b =

(
3
6

)
,

where m = n = 2, and the row rank of A is 1 < m. The feasible area of Ax = b and x ≥ 0 is
a line segment from (0, 3)T to (3, 0)T . Those two ends ((0, 3)T and (3, 0)T ) are basic feasible
points.

4.3 The weak duality states cTx′ ≥ bT y′ for any primal feasible x′ and any dual feasible y′. Thus
we have cTx = bT y ≤ cTx′ and bT y = cTx ≥ bT y′. So x is primal optimal and y is dual optimal.

4.4 If the primal LP has a feasible point x, then from the weak duality, bT y′ ≤ cTx for any dual
feasible y′. That is, the dual LP objective is upper bounded. Symmetrically, if the dual LP has
a feasible point y′, then cTx′ ≥ bT y for any primal feasible x′. That is, the primal LP objective
is lower bounded. Hence the claim in the problem holds.

4.5 Reorder the problem so that x′i and x′′i are the first two components of x. Assume there is a
basic feasible solution x = (x′i, x

′′
i , . . . ) where x′i > 0 and x′′i > 0. Let ε be any positive number

satisfying ε < x′i and ε < x′′i , and define

x+ = x+ ε(1, 1, 0, . . . , 0) = (x′i + ε, x′′i + ε, . . . ),
x− = x− ε(1, 1, 0, . . . , 0) = (x′i − ε, x′′i − ε, . . . ).

Since x ≥ 0, we have x+, x− ≥ 0 and x+ 6= x−. Since x′i and x′′i are introduced by the
replacement xi = x′i−x′′i , we know as long as x′i−x′′i doesn’t change and the other components
of x remain the same, Ax will not change. So

Ax+ = Ax− = Ax = b.

Since we also have x = 1
2x

+ + 1
2x
−, by definition x can not be a basic feasible point. So our

assumption is wrong and no basic feasible point can obtain both x′i and x′′i .
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4.6 Introduce slack variables s1 and s2. The standard form is

minimize cTx

subject to Ax = b,

x ≥ 0,

where x = (x1, x2, x3, x4, s1, s2)T , c = (−5,−7,−12, 1, 0, 0)T , b = (38, 55)T , and

A =
(

2 3 2 1 1 0
3 2 4 −1 0 1

)
.

Starting with x = (0, 0, 0, 0, 38, 55)T , by y = B−T cB, sN = cN − NT y, t = B−1Aq and
x

(k+1)
B = x

(k)
B − x

(k+1)
q t, we have table below:

k basis xB B cB y sN q t x
(k+1)
q

1 {5, 6}
(

38
55

) (
1 0
0 1

) (
0
0

) (
0
0

) 
−5
−7
−12

1

 3
(

2
4

)
55
4

2 {3, 5}

(
55
4
21
2

) (
2 1
4 0

) (
−12

0

) (
0
−3

) 
4
−1
−2
3

 4
(
−1

4
3
2

)
7

3 {3, 4}
(

31
2
7

) (
2 1
4 −1

) (
−12

1

) (
−4

3
−7

3

) 
14
3
5
3
4
3
7
3

 STOP

We stop the simplex algorithm because sN ≥ 0. Thus the optimal point is x = (0, 0, 31
2 , 7, 0, 0)T ,

and the minimum of the objective is −179.

4.7 Assume that the LP problem is not degenerate. Suppose at iteration k, variable x1 left the
basis and variable x2 entered the basis. If at iteration k + 1, variable x1 re-entered the basis,
there may be two cases for iteration k + 1:

(a) x2 left the basis. Thus the basis after iteration k+1 is the same as the basis before iteration
k, which is impossible since the simplex method ensures that the objective decreases at
each iteration.

(b) x2 remained in the basis and an other variable in the basis at iteration k, say x3, left the
basis. Thus the basis for iteration k + 2 can be formed by removing x3 from and adding
x2 into the basis at iteration k. In another word, those two basis at iteration k and k+ 2
are adjacent.
Let B and N represent basic and non-basic variables for iteration k, thus (q = 2)

cTx(k+1) = cTBx
(k)
B + sqx

(k+1)
q ,

where x(k+1)
q > 0 is the maximal value subject to

x
(k+1)
B = x

(k)
B −B

−1Aqx
(k+1)
q ≥ 0. (1)

2



Since the objective after iteration k+1 is less than that after iteration k+1, i.e., cTx(k+2) <
cTx(k+1), and basis at iteration k+ 1 and k+ 2 are both adjacent to the basis at iteration
k, we know

x(k+2)
q > x(k+1)

q

and x
(k+2)
B = x

(k)
B − B−1Aqx

(k+2)
q . However, x(k+2) is a feasible solution, so x

(k+2)
B ≥ 0,

and x
(k+1)
q is not the maximal value subject to (1). Thus this case is also impossible.

So, x1 can not re-enter the basis at iteration k + 1.

4.8 After adding the artificial variables, Phase I is supposed to solve

minimize c̃T
(
x
a

)
subject to

(
A Im

)(x
a

)
= Ax+ a = b,

x ≥ 0, a ≥ 0,

where c̃ = (0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
m

)T and Im is the m×m identity matrix. The dual conditions are

(
AT

Im

)
y + s = c̃, (2)

s ≥ 0,(
xT aT

)
s = 0. (3)

Since the Phase I terminates at a basic feasible solution to the original problem, we have in
the final Phase I basis, x ≥ 0 and a = 0. Let B represent basic variables in x. From (3) we get
sB = 0. Then from (2), we have

BT y = c̃B − sB = 0− 0 = 0.

Since B is invertible, we know y = 0. Hence, (2) gives s = c̃, i.e., the reduced costs are zero
for x and one for the artificial variables.
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