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Let z and 2’ be any two feasible points for the linear program problem. Hence
Arx = Az’ =b, x>0, and 2’ > 0.
Let 23 = \z + (1 = X)a/, where 0 < XA < 1. Thus 2™ >0, and
Az = XAz 4+ (1 =N A2’ = X\b+ (1 — \)b=b.
So 2™ is also a feasible point. Thus the feasible polytope is convex.

The claim in the problem is not true. For example,

A=) =)

where m = n = 2, and the row rank of A is 1 < m. The feasible area of Ax = b and x > 0 is
a line segment from (0,3)” to (3,0)7. Those two ends ((0,3)” and (3,0)7) are basic feasible
points.

The weak duality states ¢!z’ > by for any primal feasible 2’ and any dual feasible y’. Thus

we have ¢’z = b7y < 2’ and b7y = ¢’z > bTy/. So x is primal optimal and y is dual optimal.

If the primal LP has a feasible point z, then from the weak duality, b7y’ < ¢’z for any dual
feasible y'. That is, the dual LP objective is upper bounded. Symmetrically, if the dual LP has
a feasible point y’, then ¢!z’ > bTy for any primal feasible 2’. That is, the primal LP objective
is lower bounded. Hence the claim in the problem holds.

Reorder the problem so that x; and 2 are the first two components of z. Assume there is a

basic feasible solution x = (x}, 7, ...) where 2} > 0 and z/ > 0. Let € be any positive number
satisfying € < x} and e < z}, and define

T = 24+¢€1,1,0,...,0) = (z} + 6,2 +e...),
= = z—¢(1,1,0,...,0) = (2, —e, 2] —¢,...).

Since z > 0, we have zt, 2= > 0 and xt # z~. Since z; and 2} are introduced by the
replacement x; = x} — 2!/, we know as long as 2} — 2!/ doesn’t change and the other components
of x remain the same, Az will not change. So

Azt = Az~ = Az = 0.

Since we also have z = %:E“‘ + %x_, by definition x can not be a basic feasible point. So our
assumption is wrong and no basic feasible point can obtain both z} and z/.



4.6 Introduce slack variables s; and sy. The standard form is

minimize 'z
subject to Ax = b,
x>0,

where x = (11, 22, 3, 74, 51,52)7, ¢ = (=5,-7,-12,1,0,0)7, b = (38,55)T, and

Starting with z = (0,0,0,0,38,55)7, by y = B Tcp, sy
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ey — NTy, t = BflAq and

xgchl) _ xg“) — x(gkﬂ)t, we have table below:
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We stop the simplex algorithm because sy > 0. Thus the optimal point is x = (0,0, %, 7,0, O)T,
and the minimum of the objective is —179.

4.7 Assume that the LP problem is not degenerate. Suppose at iteration k, variable z; left the
basis and variable x5 entered the basis. If at iteration k£ + 1, variable x; re-entered the basis,
there may be two cases for iteration k + 1:

(a)

(b)

w9 left the basis. Thus the basis after iteration k+1 is the same as the basis before iteration
k, which is impossible since the simplex method ensures that the objective decreases at
each iteration.

o remained in the basis and an other variable in the basis at iteration k, say x3, left the
basis. Thus the basis for iteration k + 2 can be formed by removing z3 from and adding
T9 into the basis at iteration k. In another word, those two basis at iteration k and k + 2
are adjacent.

Let B and N represent basic and non-basic variables for iteration k, thus (¢ = 2)

T+ — chg) + sqa:((]k‘*'l),
(k+1) : . .
where x4 > 0 is the maximal value subject to

xgcﬂ) xg“) _ B—1Aq$((]k+1) > 0.



Since the objective after iteration k41 is less than that after iteration k+1, i.e., ¢l z(*k12) <
T+ "and basis at iteration k + 1 and k -+ 2 are both adjacent to the basis at iteration
k, we know

k+2 k+1
2+ 5 g(4)
and xgcﬂ) = xg) — B_lAqxékH). However, z(*72) is a feasible solution, so xg+2) > 0,
and :E((Jkﬂ) is not the maximal value subject to (1). Thus this case is also impossible.

So, 1 can not re-enter the basis at iteration k + 1.

4.8 After adding the artificial variables, Phase I is supposed to solve

I ~T (T
minimize c
a

subject to (A In) (2) = Ax +a =0,

r>0,a=>0,
where ¢ = (0,...,0,1,...,1)7 and I,,, is the m x m identity matrix. The dual conditions are
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s > 0,
(acT aT) s = 0. (3)

Since the Phase I terminates at a basic feasible solution to the original problem, we have in
the final Phase I basis, x > 0 and a = 0. Let B represent basic variables in x. From (3) we get
sp = 0. Then from (2), we have

Bly=¢g—sp=0-0=0.

Since B is invertible, we know y = 0. Hence, (2) gives s = ¢, i.e., the reduced costs are zero
for x and one for the artificial variables.



