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3.1 Assume that {pi}ni=1 are not linearly independent. Without loss of generality, there exit con-
stants ui such that

p1 =
n∑
i=2

µipi. (1)

For i = 2, 3, . . . , n, the conjugate condition gives

0 = pTi Ap1 = µip
T
i Api.

Since A is positive definite, µi = 0. From (1), p1 = 0, contradicting with p1 6= 0. So {pi}ni=1

are linearly independent.

3.2 For the inner linear CG iteration, we have A = ∇2fk, b = −∇fk, and x(0) = 0.

(a) Thus r(0) = Ax(0) − b = −b, and

p(0) = −r(0) = b = −∇fk. (2)

So x(1) = x(0) + α(0)p(0) = −α(0)∇fk. When negative curvature is detected on the first
step, x(1) is returned as pk. Since we now set α(0) = 1, pk is just the steepest descent
direction.

(b) During the inner linear CG iteration,

β(i) =
r(i)T r(i)

r(i−1)T r(i−1)

is always positive. Properties of the linear CG ensure that for i > j,

r(i)T p(j) = r(i)T r(j) = 0.

Together with (2), we have for i > 0,

bT p(i) = bT
(
−r(i) + β(i)p(i−1)

)
= r(i)T r(0) + β(i)bT p(i−1) = β(i)bT p(i−1),

i.e., bT p(i) and bT p(i−1) have the same sign. Since bT p(0) = bT b > 0, we know that
bT p(i) > 0 for all i. We also have

α(i) =
r(i)T r(i)

p(i)TAp(i)
> 0,
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as long as p(i)TAp(i) > 0. Hence

bTx(i+1) = bT
(
x(i) + α(i)p(i)

)
= bTx(i) + α(i)bT p(i) > bTx(i).

Since bTx(0) = 0, we get bTx(i+1) > 0 for i ≥ 0 as long as the negative curvature is met.
Thus the truncations in the linear CG ensure that −∇fTk pk > 0.

3.3 Hessian-free Newton methods.

(a) By the Taylor’s series,

f(xk + ε) = f(xk) + εf ′(xk) +
ε2

2
f ′′(xk + tε), t ∈ (0, 1),

we have

f ′(xk) =
f(xk + ε)− f(xk)

ε
− ε

2
f ′′(xk + tε).

If we use

f(xk + ε)− f(xk)
ε

(3)

to approximate f ′(xk), we get a truncation error

T =
ε

2

∣∣f ′′(xk + tε)
∣∣ ≤ L

2
ε.

Then if we want to T be small, we should use small ε. However, when calculating (3), we
also have the roundoff error R. From

float (float(x)− float(y)) = (float(x)− float(y)) (1 + εxy)
= (x+ εx − y − εy) (1 + εxy)
= (x− y) + (x− y) εxy + (εx − εy) (1 + εxy),

where |εx| ≤ εu |x|, |εy| ≤ εu |y|, and |εxy| ≤ εu. With x
def= f(xk + ε) and y

def= f(xk),
(assume ε can be precisely represented by the machine, for example, ε = 2−n)

R =
∣∣∣∣float (float(f(xk + ε))− float(f(xk)))

ε
− f(xk + ε)− f(xk)

ε

∣∣∣∣
=

∣∣∣∣f(xk + ε)− f(xk)
ε

εxy +
εx − εy
ε

(1 + εxy)
∣∣∣∣

≤
∣∣f ′(xk + ξε)

∣∣ εu +
εu (|f(xk + ε)|+ |f(xk)|)

ε
(1 + εu)

≤ 2εuL
ε

(
1 + εu +

ε

2

)
,

where ξ ∈ (0, 1). Thus the leading order roundoff error is

R ≈ 2εuL
ε

. (4)
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The total error

E = T +R ≈ L

2
ε+

2εuL
ε

. (5)

Thus to minimize the total error, we’d better use ε = 2
√
εu, and the total error is E ≈

2
√
εuL ≈ 10−8L. (Assume εu ≈ 10−16.) When ε decreases from a large value, the error E

first decreases, and after ε passes the optimal value, E increases.

(b) Note that f(x) is a real-value function. With Taylor’s series,∗

f(xk + iε) = f(xk) + if ′(xk)ε−
f ′′(xk)

2
ε2 − if ′′′(xk + iξε)

3!
ε3, ξ ∈ (0, 1). (6)

Thus

Im [f(xk + iε)] = f ′(xk)ε−
Re [f ′′′(xk + iξε)]

3!
ε3,

or

f ′(xk) ≈
Im [f(xk + iε)]

ε

with truncation error T = ε2

3! |Re [f ′′′(xk + iξε)]| ≤ ε2L
6 . Now the roundoff error is

R ≤ εu |Im [f(xk + iε)]|
ε

≈ εu
∣∣f ′(xk)∣∣ ≤ εuL.

(We omit the computation errors within the calculation of Im [f(xk + iε)].) The total
error is

E = T +R ≈ ε2L

6
+ εuL. (7)

Thus E decreases with ε decreases. For smaller error, we should use smaller ε, and then
E ≈ εuL ≈ 10−16L.

(c) For f(x) = x9/2, the actual derivative is f ′(x) = 9
2x

7/2. Thus the real error can be obtained
by measuring the difference between the estimated one and the real one. Figure 1 shows
the error v.s. ε at x = 1.5. The slopes of those thick red lines imply that the real behavior
of the error is just controlled by (5) or (7).

(d) We can generalize (3) as

∇2f(x)p ≈ ∇f(x+ εp)−∇f(x)
ε

,

since we have ∇f(x+ εp) ≈ ∇f(x) + ε∇2f(x)p. Similarly to (a), if each component of the
1st, 2nd and 3rd derivatives of f is bounded by L, the truncation error for each component
of ∇2f(x)p is

T ≤ ε

2
L

(∑
i

|pi|

)2

≤ εn

2
L ‖p‖2 ,

∗Define g(x) = f(xk + ix), x ∈ R. Then g(n)(x) = inf (n)(xk + ix). Thus from

g(ε) = g(0) + g′(0)ε+
g′′(0)

2
ε2 +

g′′′(ξε)

3!
ε3, ξ ∈ (0, 1),

we have (6).
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Figure 1: The total error E when calculating the first derivative of f(x) = x9/2 at x = 1.5. Two
methods, the finite difference method and the complex variable method are used. The slopes of those
thick red lines imply how the error changes with respect to ε. For example, the right-most red line
implies that E ∝ ε2, which coincides with (7) when ε2 � εu. (Note: some points are ‘lost’ because
they are machine zero and can not be shown in a loglog plot.)

where n is the dimension of p. The roundoff error, which I do not want to go to the
details, is

R ≈ 2εuL
ε

(
1 + εu +

ε
√
n

2
‖p‖
)

Usually ε
√
n ‖p‖ � 1, so we also have (4) here. Thus

E = T +R ≈ εn

2
L ‖p‖2 +

2εuL
ε

,

and the optimal ε is ε ≈ 2
‖p‖
√

εu
n ≈

√
ε
‖p‖ .

(e) The complex method is generalized as

∇2f(x)p ≈ Im [∇f(x+ iεp)]
ε

. (8)

Further assuming the 4th derivative of f is bounded by L, we have

T ≤ ε2

3!
L

(∑
i

|pi|

)3

≤ ε2

6
L
(√
n ‖p‖

)3 ≈ ε2L ‖p‖3 ,
and R ≤ εuL. So

E = T +R ≈ ε2L ‖p‖3 + εuL

and we want ε to be as small as possible.
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Table 1: Minimum found by the truncated Newton CG methods

Hessian inversion Infinite difference Complex variable
σ k ‖xk‖ fk k ‖xk‖ fk k ‖xk‖ fk

0 1 0 0 2 1.4647 E−18 1.0726 E−36 1 0 0
1 8 8.7970 E−13 3.8694 E−25 8 8.2596 E−13 3.4110 E−25 5 2.0446 E−14 2.0902 E−28

10 11 1.1555 E−15 6.6761 E−31 11 1.6368 E−14 1.3395 E−28 7a 0 0

ak = 6 when the quadratic convergence is demarded.

3.4 The objective function is

f(x) =
1
2
xTx+

σ

4
(
xTAx

)2
,

and A is a symmetric matrix. Then

∇f(x) = x+ σ
(
xTAx

)
Ax,

∇2f(x) = I4 + 2σ (Ax) (Ax)T + σ
(
xTAx

)
A.

It is easy to know that x = 0 is the global minimizer of f(x). Thus we can use the norm of xk
as a criterion of how close xk is to the minimizer.

We use ε = 10−12 for stopping condition of the outer Newton iteration, i.e.,

‖∇fk‖ ≤ ε (1 + |fk|) .

We use ε = 10−8 when calculating ∇2fkpk by Hessian-free methods. The results from the
computer experiments are in Table 1. For the sake of short, we use En representing ×10n.

It is a little surprising that different convergence rates (linear, superlinear, and quadratic) come
to the (almost) same results. It is also surprising that the Newton method converges faster
when the complex variable approximation (8) is used, than when the exact inverse of ∇2fk is
used.

3.5 First, we will get a formula for τ when the intersect with the trust region is needed. Then some
results and plots from the experiment are shown.

(a) During the inner linear CG, let p(j) and d(j) denote the CG solution and search direction.
When negative curvature is detected at step i, that is, d(i)TBkd

(i) ≤ 0, we have to find
a τ such that p = p(i) + τd(i) minimizes mk(p) with ‖p‖ ≤ ∆k. Since p(i) is spanned by{
d(j)
}
j<i

, p(i)TAd(i) = 0. Thus

mk(p) = fk +∇fTk p+
1
2
pTBkp

=
1
2
d(i)TBkd

(i) · τ2 +∇fTk d(i) · τ +mk

(
p(i)
)
.

From Problem 2, we know ∇fTk d(i) < 0. Recall that d(i)TBkd
(i) ≤ 0. So mk(p) gets its

minimum when τ ≥ 0 and ‖p‖ = ∆k.
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Figure 2: The function f(x) = 2x4
1 + 3x4

2 − 20(x2
1 + x2

2) + 2x1(x2 − 1). It is easy to see that this
function has 4 local minima, and also has some saddle points, which are non-minimizing stationary.

From ‖p‖2 =
∥∥p(i)

∥∥2
+ 2τp(i)Td(i) + τ2

∥∥d(i)
∥∥2

, τ ≥ 0, and ‖p‖ = ∆k, we have†

τ =
−p(i)Td(i) +

√(
p(i)Td(i)

)2
+
∥∥d(i)

∥∥2
(

∆2
k −

∥∥p(i)
∥∥2
)

∥∥d(i)
∥∥2 .

(b) The objective function I used to be minimized is

f(x) = 2x4
1 + 3x4

2 − 20(x2
1 + x2

2) + 2x1(x2 − 1).

We have

∇f(x) =
[

8x3
1 − 40x1 + 2x2 − 2

2x1 + 12x3
2 − 40x2

]
, and ∇2f(x) =

[
24x2

1 − 40 2
2 36x2

2 − 40

]
.

With η = 0.2, ∆0 = 1 and ∆max = 5, some results from different initial points are show
in Figure 3. We can see that since the function has 4 local minima, the result is very
sensitive to the initial point. However, the saddle points do not prevent the trust region
method from finding a local minimum.

†Since p(i) is spanned by
{
d(j)
}
j<i

, p(i)T r(i) = 0. From p(0)T d(0) = 0, and α(j) > 0 for j < i, we get

p(i)T d(i) = p(i)T
(
−r(i) + β(i)d(i−1)

)
= β(i)

(
p(i−1) + α(i−1)d(i−1)

)T
d(i−1)

> β(i)p(i−1)T d(i−1) > · · · > β(1)p(0)T d(0) = 0.

Thus the other solution to the equation ‖p‖ = ∆k is negative.
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Figure 3: The trajectories of several runs, from different initial points.
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