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3.1 Assume that {p;}; ; are not linearly independent. Without loss of generality, there exit con-
stants u; such that

n
pL=)_ wpi. (1)
1=2
For i =2,3,... ,n, the conjugate condition gives

0 = p} Ap1 = pip! Ap;.

Since A is positive definite, y; = 0. From (1), p1 = 0, contradicting with p; # 0. So {p;};-,
are linearly independent.

3.2 For the inner linear CG iteration, we have A = V2f;, b= —V fi, and z(©) = 0.
(a) Thus 79 = Az(®) —p = —p, and
PO == =b=—-vf. (2)

So (M) = 20 4 40p0) = _1OVf.. When negative curvature is detected on the first
step, (1) is returned as pj. Since we now set a(® = 1, p;, is just the steepest descent
direction.

(b) During the inner linear CG iteration,

)T G
gy - 0

r=1)T (-1
is always positive. Properties of the linear CG ensure that for i > j,
rOT ) — 20T, — o,
Together with (2), we have for ¢ > 0,
pTpl) — b7 <_r(i> 1 5@)],(@'71)) — 0T L0) 4 gOpT (=1 — gi)T (=),
ie., b'p® and bTpli—1) have the same sign. Since b'p©® = pTh > 0, we know that
bI'p() > 0 for all i. We also have
OO

CM(Z) = T . > 0,
p(z) Ap(z)



as long as p(i)TAp(i) > (0. Hence
pT pi+1) — pT (xu) i a(z’)p(i)) — T2 4 qDpTp) > pT 0.

Since b7z = 0, we get b7z > 0 for i > 0 as long as the negative curvature is met.
Thus the truncations in the linear CG ensure that —V fkT pr > 0.

3.3 Hessian-free Newton methods.

(a) By the Taylor’s series,

2
Fle+ €)= flan) +ef (en) + 50" (@ + 1), e (0,1),

we have

If we use

flzr +¢€) — f(xr)

€

to approximate f'(zy), we get a truncation error

€.

L
T = % [ an+te)] < 5

Then if we want to 7" be small, we should use small e. However, when calculating (3), we
also have the roundoff error R. From

float (float(x) — float(y)) = (float(z) — float(y)) (1 + €y)
= (@+e—y—e)(1+ey)
= (z—y)+ (2 —y)eay + (€2 — &) (1 + €xy),
where |ex| < €y |z], ley| < €ulyl, and |eay| < €u. With 2 % f(zy + €) and y & f(xy),
(assume € can be precisely represented by the machine, for example, e = 27")

float (float(f (vx + €)) — float(f(zx)))  flaw +¢€) — f(zr)

R =

€ €

xT

€, — €
= €y + = L(1+ €xy)

eu (|f(zk + )| + [ f(xr)])

€

€

’f(xk +6¢) — flan)

< | (wr+ )| ew +
2¢, L
€u (1+6u+5>7
€ 2

where £ € (0,1). Thus the leading order roundoff error is

(1+€u)

<

R~ 26uL.

€



The total error

L 2L
E=T+R~ e+t Cu (5)
€

Thus to minimize the total error, we’d better use ¢ = 2,/€,, and the total error is £ ~
2./e,L ~ 1078L. (Assume €, ~ 10715.) When ¢ decreases from a large value, the error £
first decreases, and after ¢ passes the optimal value, E increases.

Note that f(x) is a real-value function. With Taylor’s series,*

flon i) = Fan) +if (we — Tt HTEEED 5 o) ()

Thus

Re " (zs + i) 4
3! '

Im [f(zx +i€)] = f'(zx)e —

Im [f(xf + i€)]

f(xg) =

with truncation error T' = 3—2, Re [f" (zx + i&e)]| < EQTL. Now the roundoff error is

g < Gl F+ ic)]
€

~ €y }f/(xk;)‘ < e, L.
(We omit the computation errors within the calculation of Im [f(xy + i€)].) The total
error is

’L

Thus E decreases with ¢ decreases. For smaller error, we should use smaller ¢, and then
E~e,L~10710L.

For f(x) = 29/2, the actual derivative is f'(z) = 327/2. Thus the real error can be obtained
by measuring the difference between the estimated one and the real one. Figure 1 shows
the error v.s. € at x = 1.5. The slopes of those thick red lines imply that the real behavior
of the error is just controlled by (5) or (7).

We can generalize (3) as

2 oy VD) =V )

€

since we have Vf(z +ep) = Vf(z) +eV2f(x)p. Similarly to (a), if each component of the
15t, 27 and 3" derivatives of f is bounded by L, the truncation error for each component
of V2f(x)p is

2
€ en 9
T< §L <Z ’pz|> < ?L Ipl”
7

*Define g(x) = f(xx + iz), z € R. Then ¢™ () = " f™ (2} + ix). Thus from

we have (6).

9//2(0) &2 + 9///;!55) E37 fe (071)7

g(e) = g(0) + ¢'(0)e +



function f(x) = X2
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Figure 1: The total error E when calculating the first derivative of f(z) = 292 at z = 1.5. Two
methods, the finite difference method and the complex variable method are used. The slopes of those
thick red lines imply how the error changes with respect to €. For example, the right-most red line
implies that E o €2, which coincides with (7) when €2 >> ¢,. (Note: some points are ‘lost’ because
they are machine zero and can not be shown in a loglog plot.)

where n is the dimension of p. The roundoff error, which I do not want to go to the
details, is

2¢,L e\/n
R~ : <1+eu+ 5 lel)

Usually ey/n||p|| < 1, so we also have (4) here. Thus

en 2¢, L
E=T+R~Lpl"+ ==,

. . ~ 2 [Eu4 ~ ﬁ
and the optimal € is € ~ IF \/; lIpll

(e) The complex method is generalized as

b~ Im [V f(z + iep)]
€

V2 f(z)

Further assuming the 4*" derivative of f is bounded by L, we have
2 3 2
T<SL( Y Il | < SL(alpl)* =L pl,
- 3! - -6
and R < ¢,L. So
E=T+R~éeL|p|® + e L

and we want € to be as small as possible.



Table 1: Minimum found by the truncated Newton CG methods

Hessian inversion Infinite difference Complex variable
o |l k [z fr k [EAl fr k |z Jr
0| 1 0 0 2 | 1.4647E"18 | 1.0726 E36 || 1 0 0
8 | 8.7970E"1 | 3.8694E~% | 8 | 8.2596 E"12 | 3.4110E% || 5 | 2.0446E~'* | 2.0902E~28
10 || 11 | 1.1555 E7% | 6.6761 E~3! || 11 | 1.6368 E~'4 | 1.3395 E~28 || 7¢ 0 0

%k = 6 when the quadratic convergence is demarded.

3.4 The objective function is
1
f(z)=ala+ g (a:TA:U)2 ,
2 4
and A is a symmetric matrix. Then

Vf(z) = x40 (:L“TAQJ) Az,
Vif(z) = I,+20(Az)(Az)" +o (:ETA:U) A.

It is easy to know that x = 0 is the global minimizer of f(z). Thus we can use the norm of xy,
as a criterion of how close x, is to the minimizer.

We use € = 10712 for stopping condition of the outer Newton iteration, i.e.,

IVl < e+ 1kl -

We use € = 1078 when calculating V2 fipr by Hessian-free methods. The results from the
computer experiments are in Table 1. For the sake of short, we use E™ representing x10™.

It is a little surprising that different convergence rates (linear, superlinear, and quadratic) come
to the (almost) same results. It is also surprising that the Newton method converges faster
when the complex variable approximation (8) is used, than when the exact inverse of V?2f; is
used.

3.5 First, we will get a formula for 7 when the intersect with the trust region is needed. Then some
results and plots from the experiment are shown.

(a) During the inner linear CG, let p{) and d¥) denote the CG solution and search direction.
When negative curvature is detected at step ¢, that is, d(i)TBkd(i) < 0, we have to find
a 7 such that p = p® 4 7d® minimizes my(p) with ||p|| < Ag. Since p is spanned by
{d9} . p" AdD = 0. Thus

1
mi(p) = fk+Vf1?P+§PTBkP

7 Bd® - 72 + VFLdD - 1 4 my, (p@) .

1 .
— —qU
2

From Problem 2, we know Vf,;fd(i) < 0. Recall that d(i)TBkd(i) < 0. So mg(p) gets its
minimum when 7 > 0 and ||p|| = Ay.




Figure 2: The function f(z) = 2z} + 323 — 20(2? + 23) + 221 (22 — 1). It is easy to see that this
function has 4 local minima, and also has some saddle points, which are non-minimizing stationary.

From ||]o||2 = Hp(i)H2 + 2Tp(i)Td(i) + 72 “d(i){lz, 7 >0, and [|p|| = Ak, we have'

970+ (07 a0) ¢ a0 (0 - 150)
T

(b) The objective function I used to be minimized is
f(x) = 227 + 325 — 20(23 + 23) + 221 (z2 — 1).
We have

[ 8a% — 402y + 220 — 2

2422 — 40 2
V@) = op 41228 — d0zs | -

and V2 f(x) 9 3623 — 40 |-

With n = 0.2, Ag = 1 and Ayax = 5, some results from different initial points are show
in Figure 3. We can see that since the function has 4 local minima, the result is very
sensitive to the initial point. However, the saddle points do not prevent the trust region
method from finding a local minimum.

Since p* is spanned by {d(j)} , p(i)Tr(i) = 0. From p(O)Tdm) =0, and ¥ > 0 for j <1, we get
j<i

AT (i T ; N
pOTg» = po (_Tm IO 1))
B0 (p(z‘—n+a(i—1>d<z‘—1>)Td<z‘—1>
> ORI GE=D 5 S gWO@T g0 _ g

Thus the other solution to the equation ||p|| = A is negative.
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(a) From (0.2,3)T

Findf . =-96.2929 within 13 iterations

n

Findf . =-87.1667 within 10 iterations

n
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Figure 3: The trajectories

(d) From (0,2)T

of several runs, from different initial points.



