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2.1 Let λmin

(
B−1
k

)
denote the smallest eigenvalue of B−1

k . Since Bk is symmetric and positive-
definite, we know B−1

k is also symmetric and positive-definite. Thus∗

−∇fTk pk = ∇fkB−1
k ∇fk ≥ λmin

(
B−1
k

)
‖∇fk‖2 .

Also from ‖pk‖ =
∥∥B−1

k ∇fk
∥∥ ≤ ∥∥B−1

k

∥∥ ‖∇fk‖, and

λmin

(
B−1
k

)
=

1
λmax(Bk)

=
1
‖Bk‖

,

we get

cos θk =
−∇fTk pk
‖∇fk‖ ‖pk‖

≥
λmin

(
B−1
k

)
‖∇fk‖2∥∥B−1

k

∥∥ ‖∇fk‖2 =
1

‖Bk‖
∥∥B−1

k

∥∥ ≥ 1
M
.

2.2 From pNk = −∇2f−1
k ∇fk = −∇2f−1

k BkB
−1
k ∇fk = ∇2f−1

k Bkpk, we have

pk − pNk = −∇2f−1
k

(
Bk −∇2fk

)
pk. (1)

Thus ∥∥pk − pNk ∥∥ =
∥∥∇2f−1

k

(
Bk −∇2fk

)
pk
∥∥ ≤ ∥∥∇2f−1

k

∥∥∥∥(Bk −∇2fk
)
pk
∥∥ . (2)

Also from (1), ∥∥(Bk −∇2fk
)
pk
∥∥ =

∥∥∇2fk
(
pk − pNk

)∥∥ ≤ ∥∥∇2fk
∥∥∥∥pk − pNk ∥∥ . (3)

∗An n×n symmetric positive-definite matrix A with eigenvalues λi can be written as A = UTΛU , where UT = U−1,
U is an orthogonal (normalized) basis consisting of eigenvectors of A, and

Λ =

 λ1

. . .

λn

 .

Let λmin be the smallest eigenvalue of A. For any vector x, we have

xTAx = (Ux)TΛ(Ux) =

n∑
i=1

λi(Ux)2
i ≥ λmin

n∑
i=1

(Ux)2
i = λmin(Ux)T (Ux) = λminx

Tx,

where (Ux)i denotes the ith component of Ux.
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Let λ(k)
min and λ

(k)
max denote the smallest and largest eigenvalues of ∇2fk, (thus

(
λ

(k)
min

)−1
is the

largest eigenvalue of ∇2f−1
k ) and λ∗min and λ∗max denote the smallest and largest eigenvalues of

∇2f∗. Since f ∈ C2 and xk → x∗, we have for k sufficient large,

λ
(k)
min >

1
2
λ∗min > 0, λ(k)

max < 2λ∗max.

Thus ∥∥∇2fk
∥∥ < 2λ∗max,

∥∥∇2f−1
k

∥∥ < 2 (λ∗min)−1 . (4)

With (2), (3), and (4), we can assert

lim
k→∞

∥∥(Bk −∇2fk
)
pk
∥∥

‖pk‖
= 0

if and only if

lim
k→∞

∥∥pk − pNk ∥∥
‖pk‖

= 0.

2.3 If we use

αk =
rTk rk

pTkApk
, and βk+1 =

rTk+1rk+1

rTk rk

in the conjugate gradient method, then from [1, Theorem 12.1] (note that rk here is just −rk
in [1]), we have for i > j,

rTi rj = 0, rTi pj = 0.

Thus from pk = −rk + βkpk−1,

−rTk pk = rTk rk − βkrTk pk−1 = rTk rk. (5)

So for αk,

−
rTk pk

pTkApk
=

rTk rk

pTkApk
.

From rk+1 − rk = A(xk+1 − xk) = αkApk, together with (5), we get for βk+1,

rTk+1Apk

pTkApk
=
rTk+1α

−1
k (rk+1 − rk)

pTk α
−1
k (rk+1 − rk)

=
rTk+1rk+1 − rTk+1rk

rTk+1pk − rTk pk
=
rTk+1rk+1

rTk rk
.

2.4 The sufficient decrease condition says

f(xk + αkpk) ≤ fk + C1αkp
T
k∇fk. (6)

Last line search gives the descent in the objective function is |fk − fk−1|. If such a descent is
also expected in this run of line search, we have

fk − fk−1 ≈ f(xk + αkpk)− fk ≤ C1αkp
T
k∇fk.
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So approximately (notice that pTk∇fk < 0)

αk ≤
fk−1 − fk
C1pTk∇fk

.

Thus one heuristic method is to calculate

α
(g)
k =

fk − fk−1

C1pTk∇fk

and use

α
(0)
k =


5, α

(g)
k > 5;

0.2, α
(g)
k < 0.2;

α
(g)
k , otherwise.

as the starting step for the line search.

Such guess may have two benefits: first, by estimating the range of αk, we may reduce the
number of iterations within the line search, thus reduce the number of function evaluations;
second, this allows sometimes step larger than 1, which may speed the convergence.

For conjugate gradient method with periodical restart, the α
(0)
k is set to 1 when restart is

invoked.

2.5 For the stopping condition ‖∇f(xk)‖ ≤ ε, if the objective function f(x) is changed by mul-
tiplying f(x) by some constant M , the previously appropriate value of ε may be too strict
(too small) for the new problem, since xk is expected to have half the precision of f(xk) [1,
Section 11.5].

On the other side, the stopping condition ‖∇f(xk)‖ ≤ ε |f(xk)| may be inappropriate when
the minimum of f is 0 or very near to 0.

However, the stopping criterion ‖∇f(xk)‖ ≤ ε (1 + |f(xk)|) can cope with all the above diffi-
culties. When |f(xk)| is large, it is like ‖∇f(xk)‖ ≤ ε |f(xk)|; and when f(xk) is near 0, it
resembles ‖∇f(xk)‖ ≤ ε.

2.6 Use ε = 10−8 in the stopping criterion ‖∇f(xk)‖ ≤ ε (1 + |f(xk)|) , and C1 = 0.35 in the
sufficient decrease condition (6). Here are the results of those 3 methods (in all cases, xk
converges to (1, 1)T ):

Start point x0 Newton method Conjugate gradient Steepest descent
(1.2, 1.2)T f52 = 5.3264× 10−17 f17567 = 9.8419× 10−17

with α
(0)
k ≡ 1 f8 = 1.0883× 10−25 f63 = 1.6416× 10−17 f1339 = 1.1200× 10−16

(−1.2, 1)T f117 = 1.0306× 10−20 f17463 = 9.6359× 10−17

with α
(0)
k ≡ 1 f21 = 7.6820× 10−24 p4 is not descent f524 = 8.2287× 10−17

The results show that for Newton method and conjugate gradient method, it is easier to find
the local minimum (which is also the global minimum) if starting from (1.2, 1.2)T . However,
for steepest descent, starting from (−1.2, 1)T seems to be easier.

The step length for Newton method is 1 for almost all the time, and it is sometimes 0.5 or even
smaller. The step length for conjugate gradient is less than 0.008 for almost all the time. This
is also the case for steepest descent.
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In any case, Newton method surpasses other two methods. The second winner is conjugate
gradient method. These correspond to the theoretical expectations, since Newton method is
with quadratic rate and the other two are with linear rate, and the rate constant of conjugate
gradient is less than that of steepest descent.
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