ACM 113 Introduction to Optimization - Problem Set 1

Ling Li, ling@cs.caltech.edu
April 16, 2001
1.1 Let $x^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)^{T}$ be any local minimizer. $f(x)=\left(x_{1}-2 x_{2}\right)^{2}+x_{1}^{4}$ gives

$$
\begin{aligned}
\nabla f(x) & =\binom{2\left(x_{1}-2 x_{2}\right)+4 x_{1}^{3}}{-4\left(x_{1}-2 x_{2}\right)}, \\
\nabla^{2} f(x) & =\left(\begin{array}{cc}
2+12 x_{1}^{2} & -4 \\
-4 & 8
\end{array}\right) .
\end{aligned}
$$

Thus the first- and second-order derivatives of f are continuous in \mathbb{R}^{2}. From the first-order necessary condition for a local minimizer, we have

$$
\nabla f\left(x^{*}\right)=\binom{2\left(x_{1}^{*}-2 x_{2}^{*}\right)+4 x_{1}^{* 3}}{-4\left(x_{1}^{*}-2 x_{2}^{*}\right)}=\binom{0}{0} .
$$

Thus $x_{1}^{*}=x_{2}^{*}=0$, i.e., $x^{*}=(0,0)^{T}$. Now

$$
\nabla^{2} f_{*}=\nabla^{2} f\left(x^{*}\right)=\left(\begin{array}{cc}
2 & -4 \\
-4 & 8
\end{array}\right)
$$

is positive semi-definite, since

$$
\begin{equation*}
x^{T} \nabla^{2} f_{*} x=2\left(x_{1}-2 x_{2}\right)^{2} \tag{1}
\end{equation*}
$$

is non-negative for any $x=\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}$. Though $\nabla^{2} f\left(x^{*}\right)$ is not positive definite, since (1) is 0 when $x=(2,1)^{T}$, we can prove that $x^{*}=(0,0)^{T}$ is the only local minimizer, and is also a global minimizer: $f(x)=\left(x_{1}-2 x_{2}\right)^{2}+x_{1}^{4} \geq 0=f\left(x^{*}\right)$, with equality iff $x_{1}=2 x_{2}$ and $x_{1}=0$, which is just $x=x^{*}$. Thus $x^{*}=(0,0)^{T}$ is the only (global) minimizer.
1.2 Rosenbrock function. $f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$. Let $x^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)^{T}$ be any local minimizer.

$$
\begin{aligned}
\nabla f(x) & =\binom{-400\left(x_{2}-x_{1}^{2}\right) x_{1}-2\left(1-x_{1}\right)}{200\left(x_{2}-x_{1}^{2}\right)}, \\
\nabla^{2} f(x) & =\left(\begin{array}{cc}
1200 x_{1}^{2}-400 x_{2}+2 & -400 x_{1} \\
-400 x_{1} & 200
\end{array}\right)
\end{aligned}
$$

The first- and second-order derivatives of f are continuous in \mathbb{R}^{2}. From the first-order necessary condition for a local minimizer, $\nabla f\left(x^{*}\right)=\mathbf{0}$ gives $x_{1}^{*}=x_{2}^{*}=1$. Now

$$
\nabla^{2} f_{*}=\nabla^{2} f\left(x^{*}\right)=\left(\begin{array}{cc}
802 & -400 \\
-400 & 200
\end{array}\right)
$$

is positive definite, since for $x=\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}$ and $x \neq \mathbf{0}$,

$$
x^{T} \nabla^{2} f_{*} x=2 x_{1}^{2}+200\left(2 x_{1}-x_{2}\right)^{2}>0 .
$$

Thus by the second-order sufficient condition for local minimizer, we know x^{*} is a strict local minimizer. And above discussion also shows x^{*} is the only local minimizer.
1.3 Note that Q is not necessary symmetric. Let $\tilde{Q}=\frac{1}{2}\left(Q+Q^{T}\right)$. From $\tilde{Q}^{T}=\frac{1}{2}\left(Q^{T}+Q\right)=\tilde{Q}$ and $x^{T} \tilde{Q} x=\frac{1}{2}\left(x^{T} Q x+x^{T} Q^{T} x\right)=\frac{1}{2}\left(x^{T} Q x+\left(x^{T} Q x\right)^{T}\right)=x^{T} Q x$, we know \tilde{Q} is symmetric and positive definite. Thus \tilde{Q}^{-1} exists. $f(x)=\frac{1}{2} x^{T} Q x-c^{T} x$. Thus

$$
\begin{equation*}
\nabla f(x)=\tilde{Q} x-c, \quad \nabla^{2} f=\tilde{Q} \tag{2}
\end{equation*}
$$

From the start point x_{0}, Newton's method gives

$$
p_{0}^{N}=-\left(\nabla^{2} f_{0}\right)^{-1} \nabla f_{0}=-\tilde{Q}^{-1}\left(\tilde{Q} x_{0}-c\right)=-x_{0}+\tilde{Q}^{-1} c .
$$

Hence $x_{1}=x_{0}+p_{0}^{N}=\tilde{Q}^{-1} c$. It is easy to verify that $\nabla f\left(x_{1}\right)=\mathbf{0}$ and $\nabla^{2} f\left(x_{1}\right)=\tilde{Q}$ is positive definite. Thus x_{1} is a strict local minimizer of f. (The minimum of f is $-\frac{1}{2} c^{T} \tilde{Q}^{-1} c$.)
When applying Newton's method to a function f, we first approximate f by the first 3 items of its Taylor series. Then we use the first-order necessary condition to get descent direction p_{k}. So it is not surprising that when f itself is quadratic, Newton's method would find the local minimum in one step.
1.4 Define $g(\alpha)=f\left(x_{k}+\alpha p_{k}\right)$, where f is defined in Problem 1.3. From

$$
\nabla f\left(x_{k}+\alpha p_{k}\right)=\tilde{Q}\left(x_{k}+\alpha p_{k}\right)-c^{T}=\left(\tilde{Q} x_{k}-c^{T}\right)+\alpha \tilde{Q} p_{k}=\nabla f_{k}+\alpha \tilde{Q} p_{k},
$$

we get $g^{\prime}(\alpha)=p_{k}^{T} \nabla f\left(x_{k}+\alpha p_{k}\right)=p_{k}^{T} \nabla f_{k}+\alpha p_{k}^{T} \tilde{Q} p_{k}$. Solving $g^{\prime}\left(\alpha_{k}\right)=0$ gives

$$
\begin{equation*}
\alpha_{k}=-\frac{p_{k}^{T} \nabla f_{k}}{p_{k}^{T} \tilde{Q} p_{k}} \tag{3}
\end{equation*}
$$

Since p_{k} is a descent direction, we have $p_{k} \neq \mathbf{0}$ and $p_{k}^{T} \nabla f_{k}<0$. Since \tilde{Q} is positive definite, we also have $p_{k}^{T} \tilde{Q} p_{k}>0$. Thus $\alpha_{k}>0$. From $g^{\prime \prime}(\alpha)=p_{k}^{T} \tilde{Q} p_{k}>0$, we know

$$
\alpha_{k}=\arg \min _{\alpha>0} g(\alpha)=\arg \min _{\alpha>0} f\left(x_{k}+\alpha p_{k}\right) .
$$

Thus we proved that the line search should use the step length given by (3).
1.5 Line search. Starting from x_{k}, the deepest descent direction is (see (2))

$$
p_{k}=-\nabla f\left(x_{k}\right)=c-\tilde{Q} x_{k} .
$$

Then from (3), we can get α_{k} and then calculate

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} .
$$

Here we use $c=(6,3)^{T}, x_{0}=(-4,5)^{T}$, and

$$
Q_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad Q_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 10
\end{array}\right), \quad Q_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & 100
\end{array}\right)
$$

as examples with condition numbers $\kappa \in\{1,10,100\}$. The theoretical bound constants computed by

$$
C=\left(\frac{\kappa-1}{\kappa+1}\right)^{2}
$$

and the estimated constants C_{e} are

κ	1	10	100
C	0	0.66942	0.96079
C_{e}	0	0.25128	0.038135

The iteration of x_{k} is shown in Figure 1.

Figure 1: Line search with $\kappa=1,10,100$. The small circles with numbers are x_{k} 's, and the dashed lines give the descent direction p_{k} 's. Those ellipses are contours of the object function.

