
ACM 113 Introduction to Optimization - Final Exam

Ling Li, ling@cs.caltech.edu

June 6, 2001

1 The Baywatch Problem

As shown in Figure 1, denote the position of the victim as

,(0 −d)

,)(ba

sand
sea

victim

lifeguard

,)(00

θ1

,)(0x

θ2

Figure 1: The path of the lifeguard.

(a, b). The lifeguard is at (0,−d) (d > 0), and will enter the
sea at point (x, 0). The problem is

min
x
f(x) =

√
x2 + d2

v1
+

√
(a− x)2 + b2

v2
.

We need to solve f ′(x) = x
v1

√
x2+d2

+ x−a
v2

√
(a−x)2+b2

= 0 to

get the minimizer x∗.

If represented in θ1 and θ2 (−π
2 < θ1, θ2 <

π
2), the problem

is

min
θ
f(θ) =

d

v1 cos θ1
+

b

v2 cos θ2
,

subject to d tan θ1 + b tan θ2 = a. The Lagrangian is

L(θ, λ) =
d

v1 cos θ1
+

b

v2 cos θ2
− λ(d tan θ1 + b tan θ2 − a).

Solving

∇θL(θ, λ) =

[
d sin θ1
v1 cos2 θ1

− λd
cos2 θ1

b sin θ2
v2 cos2 θ2

− λb
cos2 θ2

]
= 0

gives sin θ1 = λv1 and sin θ2 = λv2. If a 6= 0, then the constraint requests λ 6= 0, so

sin θ1

sin θ2
=
v1

v2
,

which means the lifeguard should make a larger angle where his/her speed is faster.

2 Local Convergence of Trust Region Methods

a) The Cauchy point is

pck = −λ∗ ∇fk
‖∇fk‖

, 0 ≤ λ∗ ≤ ∆k,

1

and pck minimizes mk(p) subject to ‖p‖ ≤ ∆k along direction −∇fk. Thus

mk(0)−mk(pck) = −∇fTk pck −
1
2
pck
T∇2fkp

c
k

= λ∗ ‖∇fk‖ −
1
2
λ∗2
∇fTk ∇2fk∇fk
‖∇fk‖2

≥ λ ‖∇fk‖ −
1
2
λ2∇fTk ∇2fk∇fk

‖∇fk‖2
for any 0 ≤ λ ≤ ∆k. (1)

• If ∇fTk ∇2fk∇fk ≤ 0, for λ = ∆k in (1), we have

mk(0)−mk(pck) ≥ ∆k ‖∇fk‖ ≥
1
2
‖∇fk‖ ·min

(
∆k,

‖∇fk‖
‖∇2fk‖

)
.

• Otherwise, ∇fTk ∇2fk∇fk > 0. From (ref. Homework 2.1)

∇fTk ∇2fk∇fk
‖∇fk‖2

≤
∥∥∇2fk

∥∥ ,
we get from (1),

mk(0)−mk(pck) ≥ λ ‖∇fk‖ −
1
2
λ2
∥∥∇2fk

∥∥
=

1
2
‖∇fk‖2

‖∇2fk‖
−
∥∥∇2fk

∥∥
2

(
λ− ‖∇fk‖
‖∇2fk‖

)2

. (2)

If ‖∇fk‖‖∇2fk‖
≤ ∆k, then for λ = ‖∇fk‖

‖∇2fk‖
, (2) is

mk(0)−mk(pck) ≥
1
2
‖∇fk‖

‖∇fk‖
‖∇2fk‖

=
1
2
‖∇fk‖ ·min

(
∆k,

‖∇fk‖
‖∇2fk‖

)
;

otherwise for λ = ∆k, (2) becomes

mk(0)−mk(pck) ≥ ∆k ‖∇fk‖ −
∆2
k

2

∥∥∇2fk
∥∥

=
1
2
‖∇fk‖∆k +

∆k

2

∥∥∇2fk
∥∥(‖∇fk‖
‖∇2fk‖

−∆k

)
≥ 1

2
‖∇fk‖∆k =

1
2
‖∇fk‖ ·min

(
∆k,

‖∇fk‖
‖∇2fk‖

)
.

So, overall, we have

mk(0)−mk(pck) ≥
1
2
‖∇fk‖ ·min

(
∆k,

‖∇fk‖
‖∇2fk‖

)
.

In the CG-Newton trust region method, we initialize the inner CG by p(0) = 0 and d(0) =
−∇fk. If negative curvature is met during the first check, pk = pck is returned. Otherwise,
the CG iteration starts from pck,

∗ and ensures descent. So the CG-Newton method yields at
least much reduction as pck.

∗During the first iteration of CG, α(0) = r(0)T r(0)

d(0)TBkd
(0) =

∇fTk ∇fk
∇fT

k
∇2fk∇fk

and p(1) = p(0) +α(0)d(0) = − ‖∇fk‖2

∇fT
k
∇2fk∇fk

∇fk

minimizes mk(p) along −∇fk without ‖p‖ ≤ ∆k bound. Thus the following
∥∥∥p(1)

∥∥∥ ≥ ∆k check ensures p(1) = pck, or

returns pk = pck.

2

b) During the CG-Newton iterations, rk = ∇2fkpk+∇fk. Since the region constraint is inactive,
the stopping criterion requests ‖rk‖ ≤ ηk ‖∇fk‖. Thus∥∥pk − pNk ∥∥ =

∥∥∇2f−1
k (∇2fkpk +∇fk)

∥∥ =
∥∥∇2f−1

k rk
∥∥

≤ ηk
∥∥∇2f−1

k

∥∥ ‖∇fk‖
≤ ηk

∥∥∇2f−1
k

∥∥∥∥∇2fk
∥∥∥∥pNk ∥∥ = ηkκk

∥∥pNk ∥∥ ,
where κk is the condition number of ∇2fk, which is bounded for k sufficient large. Since
ηk → 0, so

∥∥pk − pNk ∥∥ = o
(∥∥pNk ∥∥).

3 LP Sensitivity Analysis

The primal-dual optimality conditions are

Ax = b, AT y + s = c, x ≥ 0, s ≥ 0, xT s = 0.

The current basis is not affected iff these conditions are not affected by the perturbation.

a) b → b + ∆b. This doesn’t change y and s. If B−1(b + ∆b) = xB + B−1∆b ≥ 0, the
basis is not affected. However, xB is changed by B−1∆b and the objective is changed by
cTBB

−1∆b = yT∆b. If xB + B−1∆b 6≥ 0, the basis is affected. Since y, s have not been
affected, (x, y, s) is primal infeasible but still dual feasible. We can use the dual simplex
algorithm to restore the primal feasibility.

b) cNi → cNi +∆cNi . This doesn’t affect x, y. However, sNi is changed by ∆cNi . If sNi +∆cNi ≥
0, the optimality conditions still hold, so the basis is not affected. And there is no change to
the objective, since xN = 0. Otherwise, the basis is affected. (x, y, s) is primal feasible but
dual infeasible. The primal simplex algorithm can be used to restore the dual feasibility and
optimality.

c) Ni → Ni + ∆Ni. This doesn’t affect x, y. However, since sN = cN −NT y, sNi is changed by
−∆NT

i y. If sNi −∆NT
i y ≥ 0, i.e., sNi ≥ ∆NT

i y, the basic and the objective are not changed,
since c, x remain the same. If sNi < ∆NT

i y, (x, y, s) is primal feasible but dual infeasible.
We can use the primal simplex algorithm to restore the dual feasibility.

d) xt added with ct and At. Regard xt as a non-basic variable and let xt = 0. y is not affected.
sN is appended by st = ct−ATt y. If st ≥ 0, the basis has not been affected and the objective
doesn’t change. Otherwise st < 0. Since (x, y, s) now is primal feasible but dual infeasible.
The primal simplex algorithm can be used to restore the dual feasibility and optimality.

4 Augmented Lagrangian Methods

For less writing, define f(x) = ex1x2x3x4x5 , c(x) = (c1(x), c2(x), c3(x))T , and

c1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10,

c2(x) = x2x3 − 5x4x5,

c3(x) = x3
1 + x3

2 + 1.

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration #

er
ro

r

error of x
error of λ

(a) a0 = 0.1, ak+1 = 6ak.

0 1 2 3 4 5 6 7
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration #

er
ro

r

error of x
error of λ

(b) ak = 0.5 fixed.

Figure 2: Error for x(k) and λ(k) are defined as
∥∥x(k) − x∗

∥∥ and
∥∥λ(k) − λ∗

∥∥, respectively.

a) Thus the augmented Lagrangian is

La(x, λ) = f(x)− λT c(x) +
a

2
‖c(x)‖2

= f(x)− λ1c1(x)− λ2c2(x)− λ3c3(x) +
a

2
[
c2

1(x) + c2
2(x) + c2

3(x)
]
. (3)

And ∇xLa(x, λ) = ∇f(x)−∇c(x)λ+ a∇c(x)c =
x2x3x4x5f(x)− 2λ1x1 − 3λ3x

2
1 + a

[
2x1c1(x) + 3x2

1c3(x)
]

x1x3x4x5f(x)− 2λ1x2 − λ2x3 − 3λ3x
2
2 + a

[
2x2c1(x) + x3c2(x) + 3x2

2c3(x)
]

x1x2x4x5f(x)− 2λ1x3 − λ2x2 + a [2x3c1(x) + x2c2(x)]
x1x2x3x5f(x)− 2λ1x4 + 5λ2x5 + a [2x4c1(x)− 5x5c2(x)]
x1x2x3x4f(x)− 2λ1x5 + 5λ2x4 + a [2x5c1(x)− 5x4c2(x)]

 . (4)

b) The program trunc newton.m is reused as the unconstrained sub-iteration which is Hessian-
free. Program aug lagran.m controls the augmented Lagrangian method by calling trunc newton.m
and updating λ(k) as

λ(k+1) = λ(k) − akc(x(k+1)),

a little different from the normal way: λ(k+1) = λ(k) − akc(x(k)). The objf 4.m defines the
augmented objective and derivative as (3) and (4).

c) Using (finite difference, superlinear convergence)

[x,l,f] = aug lagran(’objf 4’,[-2;2;2;-1;-1],[0;0;0],[0.1,6],1,1.5,1e-8,5e-8);

we get at the 6th iteration,

x∗ =


−1.71714357

1.59570969
1.82724575
−0.76364308
−0.76364308

 , λ∗ =

 −0.04016275
0.03795778
−0.00522264

 .

4

The convergence of x and λ can be seen in Figure 2(a). Here we let ak increase along the
iterations and the converge rate is more than linear. If ak is fixed at 0.5 (Figure 2(b)), the
rate is linear. The previous one uses only 6 iterations, while fixed ak uses 8.

While x→ x∗ and λ → λ∗, c(x)→ 0. The ‘augmented part’ of La(x, λ) tends to be close to
0 if a is fixed. So fixed a results in linear convergence, while ak → ∞ would speed up the
convergence. However, larger ak makes La(x, λ) more difficult to be optimized due to larger
condition number.

5 Protein Design is NP -complete

a) The decision form is: For p positions where position i has ni amino acid side-chain alternatives,
can we select the one side-chain at each position, s.t., Etotal =

∑
i

∑
j,j<i

E(ir, js) ≤ L?

b) If a PRODES has a “yes” solution, we can calculate Etotal and verify whether Etotal ≤ L.
This can be done with p(p−1)

2 additions and at most p(p−1)
2 table looking-up (to get E(ir, js)).

Thus this verification requires poly-time. Note that we may also verify the validity of the
given solution by checking that exact one side-chain is selected at each position, in O(p) time.
Thus PRODES ∈ NP .

c) Make transformation from SAT to PRODES as shown in the table.

SAT → PRODES (Etotal ≤ 0)
clause i position i
literal side-chain

of literals in clause i ni

That is, convert each clause into a position. For each literal in clause i, convert it as one
side-chain at position i. The pairwise interaction energy is defined as

E(ir, js) =
{

1, if ir and js are a variable and its negative;
0, otherwise.

For example, E(x1, x̄2) = 0, E(x̄1, x1) = 1, E(x1, x1) = 0. Such transformation requires

O

(
p∑
i=1

ni

)
time, and the calculation of E requires O

(
p∑
i=1

∑
j<i

ninj

)
time. So totally we need

O(n2) time, where n =
p∑
i=1

ni is the number of literals in SAT problem, or, the size of the

problem.

If SAT has a solution, then at least one literal is true in clause i. Select any true literal as
the selected side-chain. Since x and x̄ can’t both be true in the solution, by the definition
of E, Etotal = 0. If there is a solution to PRODES (Etotal ≤ 0), then make those selected
literals to be true. Such assignments are consistent, since Etotal ≤ 0 assures each pair in the
selection is not a pair of a variable and its negative. Then we know this is also a solution to
SAT. (Variables that are not selected could be assigned with any value.)

Thus, in O(p) time, a solution to SAT can be transformed to a solution to PRODES (Etotal ≤
0), and vice verse. SAT is polynomial-transformable to PRODES. So PRODES ∈ NP -
complete.

5

