Ling Li, ling@cs.caltech.edu

June 6, 2001

1 The Baywatch Problem

As shown in Figure 1, denote the position of the victim as (a, b). The lifeguard is at (0, -d) (d > 0), and will enter the sea at point (x, 0). The problem is

$$\min_{x} f(x) = \frac{\sqrt{x^2 + d^2}}{v_1} + \frac{\sqrt{(a-x)^2 + b^2}}{v_2}.$$

We need to solve $f'(x) = \frac{x}{v_1\sqrt{x^2+d^2}} + \frac{x-a}{v_2\sqrt{(a-x)^2+b^2}} = 0$ to get the minimizer x^* .

If represented in θ_1 and θ_2 $\left(-\frac{\pi}{2} < \theta_1, \theta_2 < \frac{\pi}{2}\right)$, the problem is

$$\min_{\theta} f(\theta) = \frac{d}{v_1 \cos \theta_1} + \frac{b}{v_2 \cos \theta_2},$$

subject to $d \tan \theta_1 + b \tan \theta_2 = a$. The Lagrangian is

$$\mathcal{L}(\theta,\lambda) = \frac{d}{v_1 \cos \theta_1} + \frac{b}{v_2 \cos \theta_2} - \lambda (d \tan \theta_1 + b \tan \theta_2 - a).$$

Solving

$$\nabla_{\theta} \mathcal{L}(\theta, \lambda) = \begin{bmatrix} \frac{d \sin \theta_1}{v_1 \cos^2 \theta_1} - \frac{\lambda d}{\cos^2 \theta_1}\\ \frac{b \sin \theta_2}{v_2 \cos^2 \theta_2} - \frac{\lambda b}{\cos^2 \theta_2} \end{bmatrix} = 0$$

gives $\sin \theta_1 = \lambda v_1$ and $\sin \theta_2 = \lambda v_2$. If $a \neq 0$, then the constraint requests $\lambda \neq 0$, so

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}$$

which means the lifeguard should make a larger angle where his/her speed is faster.

2 Local Convergence of Trust Region Methods

a) The Cauchy point is

$$p_k^c = -\lambda^* \frac{\nabla f_k}{\|\nabla f_k\|}, \quad 0 \le \lambda^* \le \Delta_k,$$

Figure 1: The path of the lifeguard.

and p_k^c minimizes $m_k(p)$ subject to $||p|| \leq \Delta_k$ along direction $-\nabla f_k$. Thus

$$m_{k}(0) - m_{k}(p_{k}^{c}) = -\nabla f_{k}^{T} p_{k}^{c} - \frac{1}{2} p_{k}^{cT} \nabla^{2} f_{k} p_{k}^{c}$$

$$= \lambda^{*} \|\nabla f_{k}\| - \frac{1}{2} \lambda^{*2} \frac{\nabla f_{k}^{T} \nabla^{2} f_{k} \nabla f_{k}}{\|\nabla f_{k}\|^{2}}$$

$$\geq \lambda \|\nabla f_{k}\| - \frac{1}{2} \lambda^{2} \frac{\nabla f_{k}^{T} \nabla^{2} f_{k} \nabla f_{k}}{\|\nabla f_{k}\|^{2}} \text{ for any } 0 \leq \lambda \leq \Delta_{k}.$$
(1)

• If $\nabla f_k^T \nabla^2 f_k \nabla f_k \leq 0$, for $\lambda = \Delta_k$ in (1), we have

$$m_k(0) - m_k(p_k^c) \ge \Delta_k \|\nabla f_k\| \ge \frac{1}{2} \|\nabla f_k\| \cdot \min\left(\Delta_k, \frac{\|\nabla f_k\|}{\|\nabla^2 f_k\|}\right).$$

• Otherwise, $\nabla f_k^T \nabla^2 f_k \nabla f_k > 0$. From (ref. Homework 2.1)

$$\frac{\nabla f_k^T \nabla^2 f_k \nabla f_k}{\|\nabla f_k\|^2} \le \left\|\nabla^2 f_k\right\|,\,$$

we get from (1),

$$m_{k}(0) - m_{k}(p_{k}^{c}) \geq \lambda \|\nabla f_{k}\| - \frac{1}{2}\lambda^{2} \|\nabla^{2}f_{k}\| \\ = \frac{1}{2} \frac{\|\nabla f_{k}\|^{2}}{\|\nabla^{2}f_{k}\|} - \frac{\|\nabla^{2}f_{k}\|}{2} \left(\lambda - \frac{\|\nabla f_{k}\|}{\|\nabla^{2}f_{k}\|}\right)^{2}.$$
(2)

If $\frac{\|\nabla f_k\|}{\|\nabla^2 f_k\|} \leq \Delta_k$, then for $\lambda = \frac{\|\nabla f_k\|}{\|\nabla^2 f_k\|}$, (2) is

$$m_k(0) - m_k(p_k^c) \ge \frac{1}{2} \|\nabla f_k\| \frac{\|\nabla f_k\|}{\|\nabla^2 f_k\|} = \frac{1}{2} \|\nabla f_k\| \cdot \min\left(\Delta_k, \frac{\|\nabla f_k\|}{\|\nabla^2 f_k\|}\right);$$

otherwise for $\lambda = \Delta_k$, (2) becomes

$$m_{k}(0) - m_{k}(p_{k}^{c}) \geq \Delta_{k} \|\nabla f_{k}\| - \frac{\Delta_{k}^{2}}{2} \|\nabla^{2} f_{k}\|$$

$$= \frac{1}{2} \|\nabla f_{k}\| \Delta_{k} + \frac{\Delta_{k}}{2} \|\nabla^{2} f_{k}\| \left(\frac{\|\nabla f_{k}\|}{\|\nabla^{2} f_{k}\|} - \Delta_{k}\right)$$

$$\geq \frac{1}{2} \|\nabla f_{k}\| \Delta_{k} = \frac{1}{2} \|\nabla f_{k}\| \cdot \min\left(\Delta_{k}, \frac{\|\nabla f_{k}\|}{\|\nabla^{2} f_{k}\|}\right)$$

So, overall, we have

$$m_k(0) - m_k(p_k^c) \ge \frac{1}{2} \left\| \nabla f_k \right\| \cdot \min\left(\Delta_k, \frac{\left\| \nabla f_k \right\|}{\left\| \nabla^2 f_k \right\|} \right)$$

In the CG-Newton trust region method, we initialize the inner CG by $p^{(0)} = 0$ and $d^{(0)} = -\nabla f_k$. If negative curvature is met during the first check, $p_k = p_k^c$ is returned. Otherwise, the CG iteration starts from p_k^c ,* and ensures descent. So the CG-Newton method yields at least much reduction as p_k^c .

^{*}During the first iteration of CG, $\alpha^{(0)} = \frac{r^{(0)T}r^{(0)}}{d^{(0)T}B_k d^{(0)}} = \frac{\nabla f_k^T \nabla f_k}{\nabla f_k^T \nabla^2 f_k \nabla f_k}$ and $p^{(1)} = p^{(0)} + \alpha^{(0)} d^{(0)} = -\frac{\|\nabla f_k\|^2}{\nabla f_k^T \nabla^2 f_k \nabla f_k} \nabla f_k$ minimizes $m_k(p)$ along $-\nabla f_k$ without $\|p\| \leq \Delta_k$ bound. Thus the following $\|p^{(1)}\| \geq \Delta_k$ check ensures $p^{(1)} = p_k^c$, or returns $p_k = p_k^c$.

b) During the CG-Newton iterations, $r_k = \nabla^2 f_k p_k + \nabla f_k$. Since the region constraint is inactive, the stopping criterion requests $||r_k|| \leq \eta_k ||\nabla f_k||$. Thus

$$\begin{aligned} \|p_{k} - p_{k}^{N}\| &= \|\nabla^{2} f_{k}^{-1} (\nabla^{2} f_{k} p_{k} + \nabla f_{k})\| = \|\nabla^{2} f_{k}^{-1} r_{k}\| \\ &\leq \eta_{k} \|\nabla^{2} f_{k}^{-1}\| \|\nabla f_{k}\| \\ &\leq \eta_{k} \|\nabla^{2} f_{k}^{-1}\| \|\nabla^{2} f_{k}\| \|p_{k}^{N}\| = \eta_{k} \kappa_{k} \|p_{k}^{N}\|, \end{aligned}$$

where κ_k is the condition number of $\nabla^2 f_k$, which is bounded for k sufficient large. Since $\eta_k \to 0$, so $\|p_k - p_k^N\| = o(\|p_k^N\|)$.

3 LP Sensitivity Analysis

The primal-dual optimality conditions are

$$Ax = b$$
, $A^Ty + s = c$, $x \ge 0$, $s \ge 0$, $x^Ts = 0$.

The current basis is not affected iff these conditions are not affected by the perturbation.

- a) $b \to b + \Delta b$. This doesn't change y and s. If $B^{-1}(b + \Delta b) = x_B + B^{-1}\Delta b \ge 0$, the basis is not affected. However, x_B is changed by $B^{-1}\Delta b$ and the objective is changed by $c_B^T B^{-1}\Delta b = y^T \Delta b$. If $x_B + B^{-1}\Delta b \ge 0$, the basis is affected. Since y, s have not been affected, (x, y, s) is primal infeasible but still dual feasible. We can use the dual simplex algorithm to restore the primal feasibility.
- b) $c_{N_i} \rightarrow c_{N_i} + \Delta c_{N_i}$. This doesn't affect x, y. However, s_{N_i} is changed by Δc_{N_i} . If $s_{N_i} + \Delta c_{N_i} \ge 0$, the optimality conditions still hold, so the basis is not affected. And there is no change to the objective, since $x_N = 0$. Otherwise, the basis is affected. (x, y, s) is primal feasible but dual infeasible. The primal simplex algorithm can be used to restore the dual feasibility and optimality.
- c) $N_i \to N_i + \Delta N_i$. This doesn't affect x, y. However, since $s_N = c_N N^T y$, s_{N_i} is changed by $-\Delta N_i^T y$. If $s_{N_i} \Delta N_i^T y \ge 0$, i.e., $s_{N_i} \ge \Delta N_i^T y$, the basic and the objective are not changed, since c, x remain the same. If $s_{N_i} < \Delta N_i^T y$, (x, y, s) is primal feasible but dual infeasible. We can use the primal simplex algorithm to restore the dual feasibility.
- d) x_t added with c_t and A_t . Regard x_t as a non-basic variable and let $x_t = 0$. y is not affected. s_N is appended by $s_t = c_t - A_t^T y$. If $s_t \ge 0$, the basis has not been affected and the objective doesn't change. Otherwise $s_t < 0$. Since (x, y, s) now is primal feasible but dual infeasible. The primal simplex algorithm can be used to restore the dual feasibility and optimality.

4 Augmented Lagrangian Methods

For less writing, define $f(x) = e^{x_1 x_2 x_3 x_4 x_5}$, $c(x) = (c_1(x), c_2(x), c_3(x))^T$, and

$$c_1(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 - 10,$$

$$c_2(x) = x_2x_3 - 5x_4x_5,$$

$$c_3(x) = x_1^3 + x_2^3 + 1.$$

Figure 2: Error for $x^{(k)}$ and $\lambda^{(k)}$ are defined as $||x^{(k)} - x^*||$ and $||\lambda^{(k)} - \lambda^*||$, respectively.

a) Thus the augmented Lagrangian is

$$\mathcal{L}_{a}(x,\lambda) = f(x) - \lambda^{T}c(x) + \frac{a}{2} \|c(x)\|^{2}$$

$$= f(x) - \lambda_{1}c_{1}(x) - \lambda_{2}c_{2}(x) - \lambda_{3}c_{3}(x) + \frac{a}{2} \left[c_{1}^{2}(x) + c_{2}^{2}(x) + c_{3}^{2}(x)\right]. \quad (3)$$
And $\nabla_{x}\mathcal{L}_{a}(x,\lambda) = \nabla f(x) - \nabla c(x)\lambda + a\nabla c(x)c =$

$$\begin{pmatrix} x_{2}x_{3}x_{4}x_{5}f(x) - 2\lambda_{1}x_{1} - 3\lambda_{3}x_{1}^{2} + a \left[2x_{1}c_{1}(x) + 3x_{1}^{2}c_{3}(x)\right] \\ x_{1}x_{3}x_{4}x_{5}f(x) - 2\lambda_{1}x_{2} - \lambda_{2}x_{3} - 3\lambda_{3}x_{2}^{2} + a \left[2x_{2}c_{1}(x) + x_{3}c_{2}(x) + 3x_{2}^{2}c_{3}(x)\right] \\ x_{1}x_{2}x_{4}x_{5}f(x) - 2\lambda_{1}x_{2} - \lambda_{2}x_{3} - 3\lambda_{3}x_{2}^{2} + a \left[2x_{2}c_{1}(x) + x_{3}c_{2}(x) + 3x_{2}^{2}c_{3}(x)\right] \end{pmatrix} \quad (4)$$

$$\begin{pmatrix} x_1 x_2 x_4 x_5 f(x) - 2\lambda_1 x_3 - \lambda_2 x_2 + a \left[2x_3 c_1(x) + x_2 c_2(x) \right] \\ x_1 x_2 x_3 x_5 f(x) - 2\lambda_1 x_4 + 5\lambda_2 x_5 + a \left[2x_4 c_1(x) - 5x_5 c_2(x) \right] \\ x_1 x_2 x_3 x_4 f(x) - 2\lambda_1 x_5 + 5\lambda_2 x_4 + a \left[2x_5 c_1(x) - 5x_4 c_2(x) \right] \end{pmatrix}.$$
(4)

b) The program trunc_newton.m is reused as the unconstrained sub-iteration which is Hessian-free. Program aug_lagran.m controls the augmented Lagrangian method by calling trunc_newton.m and updating $\lambda^{(k)}$ as

$$\lambda^{(k+1)} = \lambda^{(k)} - a_k c(x^{(k+1)}),$$

a little different from the normal way: $\lambda^{(k+1)} = \lambda^{(k)} - a_k c(x^{(k)})$. The objf_4.m defines the augmented objective and derivative as (3) and (4).

c) Using (finite difference, superlinear convergence)

we get at the 6th iteration,

$$x^* = \begin{pmatrix} -1.71714357\\ 1.59570969\\ 1.82724575\\ -0.76364308\\ -0.76364308 \end{pmatrix}, \quad \lambda^* = \begin{pmatrix} -0.04016275\\ 0.03795778\\ -0.00522264 \end{pmatrix}.$$

The convergence of x and λ can be seen in Figure 2(a). Here we let a_k increase along the iterations and the converge rate is more than linear. If a_k is fixed at 0.5 (Figure 2(b)), the rate is linear. The previous one uses only 6 iterations, while fixed a_k uses 8.

While $x \to x^*$ and $\lambda \to \lambda^*$, $c(x) \to 0$. The 'augmented part' of $\mathcal{L}_a(x, \lambda)$ tends to be close to 0 if a is fixed. So fixed a results in linear convergence, while $a_k \to \infty$ would speed up the convergence. However, larger a_k makes $\mathcal{L}_a(x, \lambda)$ more difficult to be optimized due to larger condition number.

5 Protein Design is *NP*-complete

- a) The decision form is: For p positions where position i has n_i amino acid side-chain alternatives, can we select the one side-chain at each position, s.t., $E_{total} = \sum_{i} \sum_{i,j < i} E(i_r, j_s) \leq L$?
- b) If a PRODES has a "yes" solution, we can calculate E_{total} and verify whether $E_{\text{total}} \leq L$. This can be done with $\frac{p(p-1)}{2}$ additions and at most $\frac{p(p-1)}{2}$ table looking-up (to get $E(i_r, j_s)$). Thus this verification requires poly-time. Note that we may also verify the validity of the given solution by checking that exact one side-chain is selected at each position, in O(p) time. Thus PRODES $\in NP$.
- c) Make transformation from SAT to PRODES as shown in the table.

SAT	\rightarrow	PRODES $(E_{\text{total}} \leq 0)$
clause i		position i
literal		side-chain
# of literals in clause i		n_i

That is, convert each clause into a position. For each literal in clause i, convert it as one side-chain at position i. The pairwise interaction energy is defined as

$$E(i_r, j_s) = \begin{cases} 1, & \text{if } i_r \text{ and } j_s \text{ are a variable and its negative;} \\ 0, & \text{otherwise.} \end{cases}$$

For example, $E(x_1, \bar{x}_2) = 0$, $E(\bar{x}_1, x_1) = 1$, $E(x_1, x_1) = 0$. Such transformation requires $O\left(\sum_{i=1}^p n_i\right)$ time, and the calculation of E requires $O\left(\sum_{i=1}^p \sum_{j < i} n_i n_j\right)$ time. So totally we need $O(n^2)$ time, where $n = \sum_{i=1}^p n_i$ is the number of literals in SAT problem, or, the size of the problem.

If SAT has a solution, then at least one literal is true in clause *i*. Select any true literal as the selected side-chain. Since x and \bar{x} can't both be true in the solution, by the definition of E, $E_{\text{total}} = 0$. If there is a solution to PRODES ($E_{\text{total}} \leq 0$), then make those selected literals to be true. Such assignments are consistent, since $E_{\text{total}} \leq 0$ assures each pair in the selection is not a pair of a variable and its negative. Then we know this is also a solution to SAT. (Variables that are not selected could be assigned with any value.)

Thus, in O(p) time, a solution to SAT can be transformed to a solution to PRODES ($E_{\text{total}} \leq 0$), and vice verse. SAT is polynomial-transformable to PRODES. So PRODES $\in NP$ -complete.