# ACM 113 Introduction to Optimization - Final Exam 

Ling Li, ling@cs.caltech.edu
June 6, 2001

## 1 The Baywatch Problem

As shown in Figure 1, denote the position of the victim as $(a, b)$. The lifeguard is at $(0,-d)(d>0)$, and will enter the sea at point $(x, 0)$. The problem is

$$
\min _{x} f(x)=\frac{\sqrt{x^{2}+d^{2}}}{v_{1}}+\frac{\sqrt{(a-x)^{2}+b^{2}}}{v_{2}}
$$

We need to solve $f^{\prime}(x)=\frac{x}{v_{1} \sqrt{x^{2}+d^{2}}}+\frac{x-a}{v_{2} \sqrt{(a-x)^{2}+b^{2}}}=0$ to get the minimizer $x^{*}$.

If represented in $\theta_{1}$ and $\theta_{2}\left(-\frac{\pi}{2}<\theta_{1}, \theta_{2}<\frac{\pi}{2}\right)$, the problem is

$$
\min _{\theta} f(\theta)=\frac{d}{v_{1} \cos \theta_{1}}+\frac{b}{v_{2} \cos \theta_{2}},
$$

subject to $d \tan \theta_{1}+b \tan \theta_{2}=a$. The Lagrangian is


Figure 1: The path of the lifeguard.

$$
\mathcal{L}(\theta, \lambda)=\frac{d}{v_{1} \cos \theta_{1}}+\frac{b}{v_{2} \cos \theta_{2}}-\lambda\left(d \tan \theta_{1}+b \tan \theta_{2}-a\right) .
$$

Solving

$$
\nabla_{\theta} \mathcal{L}(\theta, \lambda)=\left[\begin{array}{c}
\frac{d \sin \theta_{1}}{v_{1} \cos ^{2} \theta_{1}}-\frac{\lambda d}{\cos ^{2} \theta_{1}} \\
\frac{b \sin \theta_{2}}{v_{2} \cos ^{2} \theta_{2}}-\frac{\lambda b}{\cos ^{2} \theta_{2}}
\end{array}\right]=0
$$

gives $\sin \theta_{1}=\lambda v_{1}$ and $\sin \theta_{2}=\lambda v_{2}$. If $a \neq 0$, then the constraint requests $\lambda \neq 0$, so

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}
$$

which means the lifeguard should make a larger angle where his/her speed is faster.

## 2 Local Convergence of Trust Region Methods

a) The Cauchy point is

$$
p_{k}^{c}=-\lambda^{*} \frac{\nabla f_{k}}{\left\|\nabla f_{k}\right\|}, \quad 0 \leq \lambda^{*} \leq \Delta_{k}
$$

and $p_{k}^{c}$ minimizes $m_{k}(p)$ subject to $\|p\| \leq \Delta_{k}$ along direction $-\nabla f_{k}$. Thus

$$
\begin{align*}
m_{k}(0)-m_{k}\left(p_{k}^{c}\right) & =-\nabla f_{k}^{T} p_{k}^{c}-\frac{1}{2} p_{k}^{c T} \nabla^{2} f_{k} p_{k}^{c} \\
& =\lambda^{*}\left\|\nabla f_{k}\right\|-\frac{1}{2} \lambda^{* 2} \frac{\nabla f_{k}^{T} \nabla^{2} f_{k} \nabla f_{k}}{\left\|\nabla f_{k}\right\|^{2}} \\
& \geq \lambda\left\|\nabla f_{k}\right\|-\frac{1}{2} \lambda^{2} \frac{\nabla f_{k}^{T} \nabla^{2} f_{k} \nabla f_{k}}{\left\|\nabla f_{k}\right\|^{2}} \quad \text { for any } 0 \leq \lambda \leq \Delta_{k} \tag{1}
\end{align*}
$$

- If $\nabla f_{k}^{T} \nabla^{2} f_{k} \nabla f_{k} \leq 0$, for $\lambda=\Delta_{k}$ in (1), we have

$$
m_{k}(0)-m_{k}\left(p_{k}^{c}\right) \geq \Delta_{k}\left\|\nabla f_{k}\right\| \geq \frac{1}{2}\left\|\nabla f_{k}\right\| \cdot \min \left(\Delta_{k}, \frac{\left\|\nabla f_{k}\right\|}{\left\|\nabla^{2} f_{k}\right\|}\right) .
$$

- Otherwise, $\nabla f_{k}^{T} \nabla^{2} f_{k} \nabla f_{k}>0$. From (ref. Homework 2.1)

$$
\frac{\nabla f_{k}^{T} \nabla^{2} f_{k} \nabla f_{k}}{\left\|\nabla f_{k}\right\|^{2}} \leq\left\|\nabla^{2} f_{k}\right\|,
$$

we get from (1),

$$
\begin{align*}
m_{k}(0)-m_{k}\left(p_{k}^{c}\right) & \geq \lambda\left\|\nabla f_{k}\right\|-\frac{1}{2} \lambda^{2}\left\|\nabla^{2} f_{k}\right\| \\
& =\frac{1}{2} \frac{\left\|\nabla f_{k}\right\|^{2}}{\left\|\nabla^{2} f_{k}\right\|}-\frac{\left\|\nabla^{2} f_{k}\right\|}{2}\left(\lambda-\frac{\left\|\nabla f_{k}\right\|}{\left\|\nabla^{2} f_{k}\right\|}\right)^{2} . \tag{2}
\end{align*}
$$

If $\frac{\left\|\nabla f_{k}\right\|}{\left\|\nabla^{2} f_{k}\right\|} \leq \Delta_{k}$, then for $\lambda=\frac{\left\|\nabla f_{k}\right\|}{\left\|\nabla^{2} f_{k}\right\|}$, (2) is

$$
m_{k}(0)-m_{k}\left(p_{k}^{c}\right) \geq \frac{1}{2}\left\|\nabla f_{k}\right\| \frac{\left\|\nabla f_{k}\right\|}{\left\|\nabla^{2} f_{k}\right\|}=\frac{1}{2}\left\|\nabla f_{k}\right\| \cdot \min \left(\Delta_{k}, \frac{\left\|\nabla f_{k}\right\|}{\left\|\nabla^{2} f_{k}\right\|}\right) ;
$$

otherwise for $\lambda=\Delta_{k},(2)$ becomes

$$
\begin{aligned}
m_{k}(0)-m_{k}\left(p_{k}^{c}\right) & \geq \Delta_{k}\left\|\nabla f_{k}\right\|-\frac{\Delta_{k}^{2}}{2}\left\|\nabla^{2} f_{k}\right\| \\
& =\frac{1}{2}\left\|\nabla f_{k}\right\| \Delta_{k}+\frac{\Delta_{k}}{2}\left\|\nabla^{2} f_{k}\right\|\left(\frac{\left\|\nabla f_{k}\right\|}{\left\|\nabla^{2} f_{k}\right\|}-\Delta_{k}\right) \\
& \geq \frac{1}{2}\left\|\nabla f_{k}\right\| \Delta_{k}=\frac{1}{2}\left\|\nabla f_{k}\right\| \cdot \min \left(\Delta_{k}, \frac{\left\|\nabla f_{k}\right\|}{\left\|\nabla^{2} f_{k}\right\|}\right) .
\end{aligned}
$$

So, overall, we have

$$
m_{k}(0)-m_{k}\left(p_{k}^{c}\right) \geq \frac{1}{2}\left\|\nabla f_{k}\right\| \cdot \min \left(\Delta_{k}, \frac{\left\|\nabla f_{k}\right\|}{\left\|\nabla^{2} f_{k}\right\|}\right) .
$$

In the CG-Newton trust region method, we initialize the inner CG by $p^{(0)}=0$ and $d^{(0)}=$ $-\nabla f_{k}$. If negative curvature is met during the first check, $p_{k}=p_{k}^{c}$ is returned. Otherwise, the CG iteration starts from $p_{k}^{c}$, ${ }^{*}$ and ensures descent. So the CG-Newton method yields at least much reduction as $p_{k}^{c}$.

[^0]b) During the CG-Newton iterations, $r_{k}=\nabla^{2} f_{k} p_{k}+\nabla f_{k}$. Since the region constraint is inactive, the stopping criterion requests $\left\|r_{k}\right\| \leq \eta_{k}\left\|\nabla f_{k}\right\|$. Thus
\[

$$
\begin{aligned}
\left\|p_{k}-p_{k}^{N}\right\| & =\left\|\nabla^{2} f_{k}^{-1}\left(\nabla^{2} f_{k} p_{k}+\nabla f_{k}\right)\right\|=\left\|\nabla^{2} f_{k}^{-1} r_{k}\right\| \\
& \leq \eta_{k}\left\|\nabla^{2} f_{k}^{-1}\right\|\left\|\nabla f_{k}\right\| \\
& \leq \eta_{k}\left\|\nabla^{2} f_{k}^{-1}\right\|\left\|\nabla^{2} f_{k}\right\|\left\|p_{k}^{N}\right\|=\eta_{k} \kappa_{k}\left\|p_{k}^{N}\right\|,
\end{aligned}
$$
\]

where $\kappa_{k}$ is the condition number of $\nabla^{2} f_{k}$, which is bounded for $k$ sufficient large. Since $\eta_{k} \rightarrow 0$, so $\left\|p_{k}-p_{k}^{N}\right\|=o\left(\left\|p_{k}^{N}\right\|\right)$.

## 3 LP Sensitivity Analysis

The primal-dual optimality conditions are

$$
A x=b, \quad A^{T} y+s=c, \quad x \geq 0, \quad s \geq 0, \quad x^{T} s=0 .
$$

The current basis is not affected iff these conditions are not affected by the perturbation.
a) $b \rightarrow b+\Delta b$. This doesn't change $y$ and $s$. If $B^{-1}(b+\Delta b)=x_{B}+B^{-1} \Delta b \geq 0$, the basis is not affected. However, $x_{B}$ is changed by $B^{-1} \Delta b$ and the objective is changed by $c_{B}^{T} B^{-1} \Delta b=y^{T} \Delta b$. If $x_{B}+B^{-1} \Delta b \nsupseteq 0$, the basis is affected. Since $y, s$ have not been affected, $(x, y, s)$ is primal infeasible but still dual feasible. We can use the dual simplex algorithm to restore the primal feasibility.
b) $c_{N_{i}} \rightarrow c_{N_{i}}+\Delta c_{N_{i}}$. This doesn't affect $x$, $y$. However, $s_{N_{i}}$ is changed by $\Delta c_{N_{i}}$. If $s_{N_{i}}+\Delta c_{N_{i}} \geq$ 0 , the optimality conditions still hold, so the basis is not affected. And there is no change to the objective, since $x_{N}=0$. Otherwise, the basis is affected. ( $x, y, s$ ) is primal feasible but dual infeasible. The primal simplex algorithm can be used to restore the dual feasibility and optimality.
c) $N_{i} \rightarrow N_{i}+\Delta N_{i}$. This doesn't affect $x, y$. However, since $s_{N}=c_{N}-N^{T} y, s_{N_{i}}$ is changed by $-\Delta N_{i}^{T} y$. If $s_{N_{i}}-\Delta N_{i}^{T} y \geq 0$, i.e., $s_{N_{i}} \geq \Delta N_{i}^{T} y$, the basic and the objective are not changed, since $c, x$ remain the same. If $s_{N_{i}}<\Delta N_{i}^{T} y,(x, y, s)$ is primal feasible but dual infeasible. We can use the primal simplex algorithm to restore the dual feasibility.
d) $x_{t}$ added with $c_{t}$ and $A_{t}$. Regard $x_{t}$ as a non-basic variable and let $x_{t}=0 . y$ is not affected. $s_{N}$ is appended by $s_{t}=c_{t}-A_{t}^{T} y$. If $s_{t} \geq 0$, the basis has not been affected and the objective doesn't change. Otherwise $s_{t}<0$. Since ( $x, y, s$ ) now is primal feasible but dual infeasible. The primal simplex algorithm can be used to restore the dual feasibility and optimality.

## 4 Augmented Lagrangian Methods

For less writing, define $f(x)=e^{x_{1} x_{2} x_{3} x_{4} x_{5}}, c(x)=\left(c_{1}(x), c_{2}(x), c_{3}(x)\right)^{T}$, and

$$
\begin{aligned}
& c_{1}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}-10, \\
& c_{2}(x)=x_{2} x_{3}-5 x_{4} x_{5}, \\
& c_{3}(x)=x_{1}^{3}+x_{2}^{3}+1 .
\end{aligned}
$$



Figure 2: Error for $x^{(k)}$ and $\lambda^{(k)}$ are defined as $\left\|x^{(k)}-x^{*}\right\|$ and $\left\|\lambda^{(k)}-\lambda^{*}\right\|$, respectively.
a) Thus the augmented Lagrangian is

$$
\begin{align*}
\mathcal{L}_{a}(x, \lambda) & =f(x)-\lambda^{T} c(x)+\frac{a}{2}\|c(x)\|^{2} \\
& =f(x)-\lambda_{1} c_{1}(x)-\lambda_{2} c_{2}(x)-\lambda_{3} c_{3}(x)+\frac{a}{2}\left[c_{1}^{2}(x)+c_{2}^{2}(x)+c_{3}^{2}(x)\right] \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \text { And } \nabla_{x} \mathcal{L}_{a}(x, \lambda)=\nabla f(x)-\nabla c(x) \lambda+a \nabla c(x) c= \\
& \qquad\left(\begin{array}{l}
x_{2} x_{3} x_{4} x_{5} f(x)-2 \lambda_{1} x_{1}-3 \lambda_{3} x_{1}^{2}+a\left[2 x_{1} c_{1}(x)+3 x_{1}^{2} c_{3}(x)\right] \\
x_{1} x_{3} x_{4} x_{5} f(x)-2 \lambda_{1} x_{2}-\lambda_{2} x_{3}-3 \lambda_{3} x_{2}^{2}+a\left[2 x_{2} c_{1}(x)+x_{3} c_{2}(x)+3 x_{2}^{2} c_{3}(x)\right] \\
x_{1} x_{2} x_{4} x_{5} f(x)-2 \lambda_{1} x_{3}-\lambda_{2} x_{2}+a\left[2 x_{3} c_{1}(x)+x_{2} c_{2}(x)\right] \\
x_{1} x_{2} x_{3} x_{5} f(x)-2 \lambda_{1} x_{4}+5 \lambda_{2} x_{5}+a\left[2 x_{4} c_{1}(x)-5 x_{5} c_{2}(x)\right] \\
x_{1} x_{2} x_{3} x_{4} f(x)-2 \lambda_{1} x_{5}+5 \lambda_{2} x_{4}+a\left[2 x_{5} c_{1}(x)-5 x_{4} c_{2}(x)\right]
\end{array}\right) . \tag{4}
\end{align*}
$$

b) The program trunc_newton.m is reused as the unconstrained sub-iteration which is Hessianfree. Program aug_lagran.m controls the augmented Lagrangian method by calling trunc_newton.m and updating $\lambda^{(k)}$ as

$$
\lambda^{(k+1)}=\lambda^{(k)}-a_{k} c\left(x^{(k+1)}\right)
$$

a little different from the normal way: $\lambda^{(k+1)}=\lambda^{(k)}-a_{k} c\left(x^{(k)}\right)$. The objf_4.m defines the augmented objective and derivative as (3) and (4).
c) Using (finite difference, superlinear convergence)

$$
[x, 1, f]=\text { aug_lagran('objf_4', }[-2 ; 2 ; 2 ;-1 ;-1],[0 ; 0 ; 0],[0.1,6], 1,1.5,1 e-8,5 e-8) ;
$$

we get at the $6^{\text {th }}$ iteration,

$$
x^{*}=\left(\begin{array}{r}
-1.71714357 \\
1.59570969 \\
1.82724575 \\
-0.76364308 \\
-0.76364308
\end{array}\right), \quad \lambda^{*}=\left(\begin{array}{r}
-0.04016275 \\
0.03795778 \\
-0.00522264
\end{array}\right)
$$

The convergence of $x$ and $\lambda$ can be seen in Figure 2(a). Here we let $a_{k}$ increase along the iterations and the converge rate is more than linear. If $a_{k}$ is fixed at 0.5 (Figure 2(b)), the rate is linear. The previous one uses only 6 iterations, while fixed $a_{k}$ uses 8 .
While $x \rightarrow x^{*}$ and $\lambda \rightarrow \lambda^{*}, c(x) \rightarrow 0$. The 'augmented part' of $\mathcal{L}_{a}(x, \lambda)$ tends to be close to 0 if $a$ is fixed. So fixed $a$ results in linear convergence, while $a_{k} \rightarrow \infty$ would speed up the convergence. However, larger $a_{k}$ makes $\mathcal{L}_{a}(x, \lambda)$ more difficult to be optimized due to larger condition number.

## 5 Protein Design is $N P$-complete

a) The decision form is: For $p$ positions where position $i$ has $n_{i}$ amino acid side-chain alternatives, can we select the one side-chain at each position, s.t., $E_{\text {total }}=\sum_{i} \sum_{j, j<i} E\left(i_{r}, j_{s}\right) \leq L$ ?
b) If a PRODES has a "yes" solution, we can calculate $E_{\text {total }}$ and verify whether $E_{\text {total }} \leq L$. This can be done with $\frac{p(p-1)}{2}$ additions and at most $\frac{p(p-1)}{2}$ table looking-up (to get $E\left(i_{r}, j_{s}\right)$ ). Thus this verification requires poly-time. Note that we may also verify the validity of the given solution by checking that exact one side-chain is selected at each position, in $O(p)$ time. Thus PRODES $\in N P$.
c) Make transformation from SAT to PRODES as shown in the table.

| SAT | $\rightarrow$ |
| :---: | :---: |
| PRODES $i$ | position $i$ |
| literal | pose |
| $\#$ of literals in clause $i$ | side-chain |
|  | $n_{i}$ |

That is, convert each clause into a position. For each literal in clause $i$, convert it as one side-chain at position $i$. The pairwise interaction energy is defined as

$$
E\left(i_{r}, j_{s}\right)= \begin{cases}1, & \text { if } i_{r} \text { and } j_{s} \text { are a variable and its negative; } \\ 0, & \text { otherwise }\end{cases}
$$

For example, $E\left(x_{1}, \bar{x}_{2}\right)=0, E\left(\bar{x}_{1}, x_{1}\right)=1, E\left(x_{1}, x_{1}\right)=0$. Such transformation requires $O\left(\sum_{i=1}^{p} n_{i}\right)$ time, and the calculation of $E$ requires $O\left(\sum_{i=1}^{p} \sum_{j<i} n_{i} n_{j}\right)$ time. So totally we need $O\left(n^{2}\right)$ time, where $n=\sum_{i=1}^{p} n_{i}$ is the number of literals in SAT problem, or, the size of the problem.
If SAT has a solution, then at least one literal is true in clause $i$. Select any true literal as the selected side-chain. Since $x$ and $\bar{x}$ can't both be true in the solution, by the definition of $E, E_{\text {total }}=0$. If there is a solution to PRODES $\left(E_{\text {total }} \leq 0\right)$, then make those selected literals to be true. Such assignments are consistent, since $E_{\text {total }} \leq 0$ assures each pair in the selection is not a pair of a variable and its negative. Then we know this is also a solution to SAT. (Variables that are not selected could be assigned with any value.)
Thus, in $O(p)$ time, a solution to SAT can be transformed to a solution to PRODES ( $E_{\text {total }} \leq$ 0 ), and vice verse. SAT is polynomial-transformable to PRODES. So PRODES $\in N P$ complete.


[^0]:    ${ }^{*}$ During the first iteration of CG, $\alpha^{(0)}=\frac{r^{(0)} r^{(0)}}{d^{(0)} B_{k} d^{(0)}}=\frac{\nabla f_{k}^{T} \nabla f_{k}}{\nabla f_{k}^{T} \nabla^{2} f_{k} \nabla f_{k}}$ and $p^{(1)}=p^{(0)}+\alpha^{(0)} d^{(0)}=-\frac{\left\|\nabla f_{k}\right\|^{2}}{\nabla f_{k}^{T} \nabla^{2} f_{k} \nabla f_{k}} \nabla f_{k}$ minimizes $m_{k}(p)$ along $-\nabla f_{k}$ without $\|p\| \leq \Delta_{k}$ bound. Thus the following $\left\|p^{(1)}\right\| \geq \Delta_{k}$ check ensures $p^{(1)}=p_{k}^{c}$, or returns $p_{k}=p_{k}^{c}$.

