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Abstract

This paper studies the fusion of contextual information in pattern recognition, with applications to biomedical image identifi-

cation. In the real world there are cases where the identity of an object is ambiguous if the classification is based only on its own

features. It is helpful to reduce the ambiguity by utilizing extra information, referred to as context, provided by accompanying

objects. We investigate two techniques that incorporate context. The first approach, based on compound Bayesian theory, incor-

porates context by fusing the measurements of all objects under consideration. It is an optimal strategy in terms of achieving

minimum set-by-set error probability. The second approach fuses the measurements of an object with explicitly extracted context.

Its linear computational complexity makes it more tractable than the first approach, which requires exponential computation. These

two techniques are applied to two medical applications: white blood cell image classification and microscopic urinalysis. It is

demonstrated that superior classification performances are achieved by using context. In our particular applications, it reduces

overall classification error, as well as false positive and false negative diagnosis rates.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

For pattern classification, the primary source of in-

formation for each object of interest is the set of mea-

surements associated with the object, commonly

referred to as ‘‘features’’. Often the identity of an object

inferred solely from its features is ambiguous. This can

be due to the noise in the measurements, less-than-
optimal feature selection and extraction, or intrinsic

overlap among the class-conditional feature distribu-

tions. This fundamentally limits the performance of a

pattern recognition system.

In many application domains, the classification of an

object can be assisted by considering more than simply

the features of the object itself. One form of such extra

information is ‘‘context’’. In remote sensing image
classification, where each pixel is part of ground cover, a

pixel is more likely to be a glacier if it is in a moun-

tainous area, than if surrounded by pixels of residential

areas. In text analysis, one can expect to find certain

letters occurring regularly in particular arrangement

with other letters (qu, ee, est, tion, etc.). Such extra in-

formation conveyed by the accompanying entities is

referred to as contextual information, or context. Con-

text is fundamental to many, if not all, spheres of human

endeavor. It occurs at many different levels including

perceptual, cognitive, and statistical [30]. Context is also
an essential component for sensor fusion [21]. Context

incorporation is a mechanism that ensures accurate

perception and appropriate interpretation of ambigui-

ties. How humans appear to use context suggests that in

automated pattern recognition we should be able to use

context in conjunction with primary features in order to

tackle such challenges as disambiguation and error-

correction.
Context can assume various properties in different

applications. It can be stationary or non-stationary (the

relationship among contextual variables changes spa-

tially or temporally). It can be local (only objects in a

spatially or temporally local neighborhood are contex-

tually relevant) or global (all objects under consider-

ation are contextually relevant).
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Extensive efforts have been made to incorporate
contextual information at one level or another [8–

10,12,16,25,28,29,31,32]. One major school of context

incorporation techniques falls in the Bayesian frame-

work. A well known example is relaxation labeling

[6,17,19,24]. It is based on a probabilistic iterative pro-

cedure for reducing ambiguities in the labeling of scene

elements. As is typical for such Bayesian formulation,

the computation complexity is exponential in the num-
ber of co-existing objects. A good review of methods

that deal with such complexity is given in [18]. In one

form or another, these methods take advantage of the

locality of context to simplify computation. Another

important school for probabilistic modeling of context is

hidden Markov model (HMM) [13,23]. The definition of

a HMM indicates that such context is local. Global

context calls for a different approach, which is part of
the aim of this paper.

This paper first studies the incorporation of contex-

tual information formulated under compound Bayesian

framework. The optimality of such formulation is in-

vestigated, both in terms of error probabilities and in

terms of information gain. The benefit of such approach

is exemplified by the application of white blood cell

(WBC) image recognition. Compound Bayesian for-
mulation can be thought of as context incorporation by

fusing the measurements of all objects. To circumvent

the exponential complexity of the compound Bayesian

framework when simplifications are not feasible, we

then introduce a method of context incorporation by

fusing measurements of an object directly with derived

context. This approach has only linear computational

complexity. Its effectiveness is demonstrated by the ap-
plication of automatic microscopic urinalysis.

2. Mathematical framework

2.1. Compound Bayesian theory for context

2.1.1. Formulation

Let us consider a set of N objects Ti, i ¼ 1; . . .N . We
associate each object Ti with a label ci that is a member
of a label set X ¼ fx1; . . . ;xDg. Each object Ti is char-
acterized by a feature vector xi 2 RP.

We make a conditional independence assumption
which states pðxijci; c1; c2; . . . ; cJ ; x1; . . . ; xi�1; xiþ1; . . . ;
xKÞ ¼ pðxijciÞ for any J ¼ 0; 1; . . . ;N and J 6¼ i, and
K ¼ 0; 1; . . . ;N (where x0 and c0 are null elements). This
assumption corresponds to a case where the appearance

of an object is fully determined by its identity and not

affected by the appearances and the identities of other

accompanying objects. This is not always true in the real

world. However, it is a good approximation for many
domains. Under this assumption, it is easy to see that

pðx1; x2; . . . ; xN jc1; c2; . . . ; cN Þ ¼ pðx1jc1Þ � � � pðxN jcN Þ.

Using the Compound Bayes rule, it follows that

pðc1; c2; . . . ; cN jx1; x2; . . . ; xNÞ

¼ pðc1jx1Þ � � � pðcN jxNÞpðx1Þ � � � pðxN Þpðc1; c2; . . . ; cN Þ
pðc1Þ � � � pðcN Þpðx1; x2; . . . ; xN Þ

ð1Þ

Since pðx1; x2; . . . ; xNÞ and pðxiÞ are constant for a
given set of objects, then

pðc1; . . . ; cN jx1; . . . ; xNÞ

/ pðc1jx1Þ � � � pðcN jxN Þ
pðc1; . . . ; cN Þ
pðc1Þ � � � pðcN Þ

ð2Þ

¼ pðc1jx1Þ � � � pðcN jxN Þqðc1; c2; . . . ; cN Þ

where

qðc1; c2; . . . ; cN Þ,
pðc1; c2; . . . ; cN Þ
pðc1Þ � � � pðcN Þ

ð3Þ

The decision rule chooses class labels ĉc1; ĉc2; . . . ; ĉcN
such that

ðĉc1; ĉc2; . . . ; ĉcN Þ ¼ argmax
ðc1;c2;...;cN Þ

pðc1; c2; . . . ; cN jx1; x2; . . . ; xN Þ

ð4Þ

We term this decision rule the full context maximum

posterior (FCMP) rule, in comparison with the partial

context maximum posterior (PCMP) decision rule to be
introduced in Section 2.2. Both FCMP and PCMP are

context sensitive. In contrast, context-free approach

views each object in isolation, assuming its identity to

depend only on its own feature vector. The corre-

sponding context-free maximum posterior (CFMP) de-

cision rule selects the class label ĉci for i ¼ 1; . . . ;N such
that ĉci ¼ argmax

ci
pðcijxiÞ:

The quantity qðc1; c2; . . . ; cN Þ, which we call the con-
text ratio and through which the context plays its role,

captures the dependence among the objects. In the

special case where all the objects are independent,

pðc1; c2; . . . ; cNÞ ¼ pðc1Þ � � � pðcN Þ, which implies qðc1; c2;
. . . ; cN Þ ¼ 1. In this case, there is no contextual infor-
mation, and maximizing the context sensitive posterior

probability in Eq. (1) is equivalent to maximizing the

context-free posterior probabilities pðcijxiÞ for all i.

2.1.2. Optimality of FCMP decision rule

We introduce the following notation: for a set of N
elements fT1; . . . ; TNg, let vector random variable c ¼
ðc1; c2; . . . ; cN Þ be the true labeling of the set, ĉc ¼ ðĉc1; ĉc2;
. . . ; ĉcN Þ the estimated labeling, and x ¼ ðx1; x2; . . . ; xN Þ
the feature vectors of the set of elements. For any

element in the set, let scalar random variable c be its true
labeling, ĉc its estimated labeling, and x its feature

vector.
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Two types of errors occur when our inference of the
class is different from the true class. The set-by-set error

probability is defined as

P sete ¼ P ðĉc 6¼ cÞ ¼
Z
c

Z
x
P ðĉcðxÞ 6¼ cjx; cÞpðx; cÞdxdc

¼
Z
c

Z
x
½1� dðĉcðxÞ � cÞ�pðx; cÞdxdc

where

dðsÞ ¼ 1 if s ¼ 0
0 otherwise

�

is the Kronecker delta.

The element-by-element error probability is defined

as

P elemente ¼ Pðĉc 6¼ cÞ

¼
Z
c

Z
x

1

N

XN
n¼1

pðĉcnðxÞ
"

6¼ cnjx; cÞ
#
pðx; cÞdxdc

¼
Z
c

Z
x

1

N

XN
n¼1

½1� dðĉcnðxÞ � cnÞ�pðx; cÞdxdc

According to the definition of set-by-set error, a set

of elements is correctly classified if and only if every

single element in the set is correctly classified. For

element-by-element error, the error is counted on an
element-by-element basis. The difference between a set

and an element is analogous to that between a word and

a letter. We are usually more concerned with set-by-set

error than with element-by-element error.

It is important to point out that FCMP in Eq. (4) is

the decision rule which achieves minimum set-by-set

error probability. This is essentially the optimality of

Bayes error rate. Conditioned on the collective feature
vectors x ¼ ðx1; . . . ; xNÞ, no other decision rule is better
in terms of achieving a smaller set-by-set error proba-

bility. The same logic implies that if conditioned only on

isolated feature xi, the maximum posterior decision rule

for pðcijxiÞ given xi achieves minimum element-by-ele-

ment probability of error. However, it is possible that a

decision rule conditioned on x ¼ðx1; . . . ; xN Þ has smaller
element-by-element error probability than the one ob-
tained conditioning only on isolated feature xi, since

more information is being utilized.

2.1.3. Information-theoretic interpretation of FCMP

decision rule

Define Nd as the number of objects in class d, and

md ¼ Nd=N the frequency of class d. Clearly,
PD

d¼1
Nd ¼ N and

PD
d¼1 md ¼ 1. Let Pd be the prior probability

of class d, for d ¼ 1; . . . ;D, and P ¼ ðP1; P2; . . . ; PDÞ be
the class prior probability vector. Let m ¼ ðm1; m2; . . . ; mDÞ
the class frequency vector. Taking logarithms on both

sides of Eq. (2) gives

where HðmkPÞ ¼
PD

d¼1 md lnðmd=PdÞ is the relative en-
tropy between m and P, and HðmÞ ¼ �

PD
d¼1 md ln md is

the entropy of the class frequency.

The above relation implies that maximizing

pðc1; . . . ; cN jx1; . . . ; xN Þ using context has the effect of
trying to achieve a trade-off among several factors: the

likelihood of each object given its feature (the first term),

the likelihood of the set of objects appearing jointly (the
second term), the distance of the class frequency profile

of the set of objects from the prior distribution of the

classes (the third term), and the entropy of the class

frequency profile (the forth term). The maximization of

the fourth term implies that the least amount of further

information is assumed about the frequency profile. The

first term depends on the features, and the other three

depend only on the labels.
Another way to look at the benefit of context is its

information gain. It follows from the chain rule for

conditional entropy [5] that

Hðc1; c2; . . . ; cN jx1; x2; . . . ; xN Þ
6Hðc1jx1Þ þ Hðc2jx2Þ þ � � � þ HðcN jxN Þ

Equality is achieved if and only if pðcijx1; x2; . . . ; xN ;
c1; . . . ; ci�1Þ ¼ pðcijxiÞ hold true for all i ¼ 1; . . . ;N . This
condition implies that ci is fully determined by xi and

nothing else, which means that there is no context and

therefore no information gain by considering context.

When there is contextual information conveyed by other

objects, this condition does not hold, in which case

Hðc1; c2; . . . ; cN jx1; x2; . . . ; xN Þ is strictly less than Hðc1j
x1Þ þ Hðc2jx2Þ þ � � � þ HðcN jxN Þ, and context provides
information gain.

2.1.4. Complexity problem

When implementing the FCMP decision rule, we

want to find a combination of ðc1; . . . ; cNÞ that maxi-
mizes pðc1; . . . ; cN jx1; . . . ; xNÞ. Suppose the D dimen-

sional context-free probability vector pðcijxiÞ is known

ln pðc1; . . . ; cN jx1; . . . ; xN Þ ¼
XN
i¼1
ln pðcijxiÞ þ ln

pðc1; . . . ; cN Þ
pðc1Þ � � � pðcN Þ

þ constant ð5Þ

¼
XN
i¼1
ln pðcijxiÞ þ ln pðc1; . . . ; cN Þ þ NHðmkPÞ þ NHðmÞ þ constant ð6Þ

X.B. Song et al. / Information Fusion 3 (2002) 277–287 279



for all i ¼ 1; . . . ;N . To compute pðc1; . . . ; cN jx1; . . . ; xN Þ
for all possible combinations of ðc1; . . . ; cN Þ, the total
number of multiplications is ð2N þ 1ÞDN , and the com-

plexity to find the maximum is DN . For the WBC rec-

ognition problem, D ¼ 14 and N is typically around 600,
the computation is virtually intractable. Sometimes ad-

ditional constraints can be used to reduce computation,

as is the case of WBC identification (Section 3). Often

such simplifications are not feasible. This limits the di-
rect use of compound Bayesian formulation.

2.2. Fusion of measurements with contextual information

Compound Bayesian theory can be viewed as a way of

incorporating context by fusing the measurements for all

objects in a set together. It is set-centered in the sense that

a decision is made simultaneously on all the objects in the

set. To avoid the exponential computation, an alterna-

tive is to fuse the measurements of an object directly with

the context. Such context can be derived/extracted from
the measurements of all objects in the set. It will be ob-

ject-centered––only the decision about one object is

made at a time. Its formulation is given as follows.

2.2.1. Formulation

Let A be the derived context. The physical definition
of A depends on the problem at hand. For example, A
can be the percentage profile of all the classes, or the

binary presence vector of the classes, or the presence of

one or a few particular classes. A can also represent
certain external information sources, such as the che-

mistry result in urinalysis which is a urine test different

from, yet related to, microscopic urinalysis [1].

Once again, we make the conditional independence

assumption pðxijci;AÞ ¼ pðxijciÞ, then

pðcijxi;AÞ ¼ pðcijxiÞ
pðcijAÞ
pðciÞ

pðAÞpðxiÞ
pðxi;AÞ

/ pðcijxiÞ
pðcijAÞ
pðciÞ

¼ pðcijxiÞqðci;AÞ ð7Þ

The context sensitive posterior probability pðcijxi;AÞ is
obtained through the context-free posterior probability

pðcijxiÞ modified by context ratio qðci;AÞ ¼ pðcijAÞ=
pðciÞ.
The corresponding decision rule chooses class label ĉci

for element i such that

ĉci ¼ argmax
ci

pðcijxi;AÞ ð8Þ

which we term as the PCMP decision rule, since it uses

derived context.

2.2.2. Computational complexity

This PCMP approach treats each element in a set
individually, with additional information from context-

bearing factor A. Again we assume the D dimensional

context-free probability vector pðcijxiÞ is already known
for all i ¼ 1; . . . ;N . Once the context A is obtained, we
want to maximize pðcijxi;AÞ from D possible values that
ci can take on, for all i. The total number of multipli-
cations is 2N , and the complexity for finding the maxi-
mum is ND. Both are linear in N . Table 1 gives the
comparison.

2.3. Test on a toy problem

The fusion of context to improve performance can be

first demonstrated by a toy problem. We compare the
performance of context sensitive approaches FCMP

(Eq. (4)) and PCMP (Eq. (8)) to that of the CFMP

decision rule for the both set-by-set and element-

by-element error probability. In this toy problem, there

are N ¼ 3 elements in each set c ¼ ðc1; c2; c3Þ. Each ele-
ment takes ternary values from X ¼ f0; 1; 2g, therefore
D ¼ 3. The joint distribution pðcÞ is specified in Table 2.

Table 1

Comparison of computational costs

Methods Number of

multiplications

Complexity for

finding max

Compound Bayesian

(FCMP)

ð2N þ 1ÞDN DN

Fusing measurements with

context (PCMP)

2N ND

Context free (CFMP) 0 ND

Table 2

pðcÞ for the toy problem
c pðcÞ
0 0 0 0

0 0 1 0.15

0 0 2 0

0 1 0 0.05

0 1 1 0.02

0 1 2 0

0 2 0 0

0 2 1 0

0 2 2 0

1 0 0 0.08

1 0 1 0.15

1 0 2 0

1 1 0 0.05

1 1 1 0.05

1 1 2 0.10

1 2 0 0

1 2 1 0.15

1 2 2 0.02

2 0 0 0

2 0 1 0

2 0 2 0

2 1 0 0

2 1 1 0.02

2 1 2 0.02

2 2 0 0

2 2 1 0.02

2 2 2 0.12
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The conditional independence assumption leads to

pðxjcÞ ¼
QN

i¼1 pðxijciÞ. The class-conditional feature

distributions are Gaussians: pðxjc ¼ 0Þ ¼ Nðl0; r0Þ,
pðxjc ¼ 1Þ ¼ Nðl1; r1Þ, and pðxjc ¼ 2Þ ¼ Nðl2; r2Þ. In
this toy problem, the derived context A is the presence or
absence of class 0. We choose l0 ¼ 0, r0 ¼ 0:01 and both
l1, l2 � l0, and r1 ¼ 1:0 and r2 ¼ 0:6. The distance
between l1 and l2 determines the separability of class 1
and 2. We compare the performances of the three

approaches as we vary jl1 � l2j. Monte Carlo experi-
ments were run and the results are illustrated in Fig. 1. As

we can see, both the context sensitive approaches FCMP
and PCMP consistently outperform the context-free

approach, for both set-by-set and element-by-element

error probability. In terms of set-by-set error, the FCMP

algorithm is the best, which is expected due to its

optimality. In terms of element-by-element error prob-

ability, both FCMP and PCMP algorithms are better

than the CFMP algorithm, but there is no clear winner

between the former two. Error probability, both set-
by-set and element-by-element, decrease as jl1 � l2j

becomes larger. This is not surprising since there is less

ambiguity. However, the significance of context does not

diminish. The ratios of error probabilities for both

FCMP and PCMP to context-free error probabilities
actually decrease as jl0 � l1j becomes large, as shown in
Fig. 2, which implies that the effect of context becomes

more significant in a relative sense.

3. White blood cell identification

3.1. Introduction

WBC analysis is one of the major routine laboratory

examinations. In various physiological and pathological

conditions the relative percentage composition of the

WBC changes. An estimate of the percentage of each

class present in a blood sample conveys information

which is pertinent to the hematological diagnosis. Most
WBC differentiation depends almost entirely on manual

specimen preparation and human interpretation, and

Fig. 1. Comparison of error probabilities with and without context: (a) set-by-set error, (b) element-by-element error. In both figures, the dash-dot

line is for CFMP, the dotted line is with FCMP, and the solid line is with PCMP.

Fig. 2. The ratio of with-context error probability to without-context error probability: (a) set-by-set error probabilities, (b) element-by-element error

probabilities. In both figures, the dashed line is with PCMP, and the solid line is with FCMP.
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more than 90% of the direct costs are labor. The avail-

ability of Automated Intelligent Microscopy Flow

Imaging technology [15] makes it possible to have au-

tomated differentiation, which will reduce labor and

health care costs, and is more efficient. Typical com-

mercial differential WBC counting systems are designed
to identify five major mature cell types. But blood

samples may also contain immature cells. These cells

occur infrequently in a normal specimen, and most

commercial systems will simply indicate the presence of

these cells because they cannot be individually identified

by the systems. But it is precisely these cell types that

relate to the production rate and maturation of new cells

and thus are important indicators of hematological
disorders. Our system is designed to differentiate four-

teen WBC types which includes the five major mature

types: segmented neutrophils, lymphocytes, monocytes,

eosinophils, and basophils; and the immature types:

bands (unsegmented neutrophils), metamyelocytes, my-

elocytes, promyelocytes, blasts, and variant lympho-

cytes; as well as nucleated red blood cells and artifacts.

Differential counts are made based on the cell classifi-
cations, which further leads to diagnosis or prognosis.

There is a range of differential counts of all cell types

within which a specimen is considered normal. A speci-

men is abnormal if the differential counts of one or more

cell types fall out of their ranges.

The data is provided by International Remote

Imaging Systems (IRIS), Inc. Blood specimens are col-

lected at Harbor UCLA Medical Center from local
patients, then dyed with Basic Orange 21 metachromatic

dye supravital stain. The specimen is then passed

through a flow microscopic imaging and image pro-

cessing instrument, where the blood cell images are

captured. Each image contains a single cell with full

color. There are typically 600 images from each speci-

men. The task of the cell recognition system is to cate-

gorize the cells based on the images. Fig. 3 is an example
of cell images of various types.

The size of cell images are automatically tailored

according to the size of the cell in the images. Images

containing larger cells have bigger sizes than those with

small cells. The range varies from 20� 20 to 40� 40
pixels, and the average size is around 25� 25. At the
preprocessing stage, the images are segmented using

adaptive thresholding to set the cell interior apart from

the background. Features based on the interior of the
cells are extracted from the images. The features include

size, shape, color 1 and texture. See Table 3 for the list of

features. 2 These features by design are rotation and

translation invariant.

The features are fed into a non-linear feed-forward

neural network with 20 inputs, 15 hidden units with

sigmoid transfer functions, and 14 sigmoid output units.

A cross-entropy error function is used in order to give
the output a probability interpretation. Denote the input

feature vector as x, the network outputs a D dimensional
vector (D ¼ 14 in this case) p ¼ fpðdjxÞg; d ¼ 1; . . . ;D;
where pðdjxÞ ¼ Probða cell belongs to class djfeature xÞ.
The maximum posterior context-free decision rule at

this stage is dðxÞ ¼ argmax
d

pðdjxÞ.

3.2. Context for WBC analysis

The context-free cell-by-cell decision is only based on

the features presented by a cell, without looking at any
other cells. When human experts make decisions, they

always look at the whole specimen, taking into consid-

eration the identities of other cells and adjusting the cell-

by-cell decision on a single cell according to the company

it keeps. On top of the visual perception of the cell

patterns, such as shape, color, size and texture, com-

parisons and associations, either mental or visual, with

other cells in the same specimen are made to infer the
final decision. A cell is assigned a certain identity if the

company it keeps supports that identity. For instance,

Fig. 3. Examples of some of the WBC images.

1 A color image is decomposed into three intensity images––red,

green and blue respectively.
2 The red–blue distribution is the pixel-by-pixel logðredÞ � logðblueÞ

distribution for pixels in cell interior. The red distribution is the

distribution of the red intensity in cell interior.

282 X.B. Song et al. / Information Fusion 3 (2002) 277–287



the difference between lymphocyte and blast can be very

subtle sometimes, especially when the cell is large. A

large unusual mononuclear cell with the characteristics

of both blast and lymphocyte is more likely to be a blast

if accompanied by other abnormal cells or an abnormal

distribution of the cells. Context incorporation is treated

as the post-processing after the cell-by-cell decisions.

In this application, it is the count in each class, rather
than the particular ordering or numbering of the ob-

jects, that matters, since it is the percentage profile of all

classes in a specimen that convey diagnostic information

[26]. Under such circumstance the contextual ratio

qðc1; c2; . . . ; cN Þ is a function of the counts in each class.
It can be shown that

qðc1; c2; . . . ; cN Þ ¼
pðc1; c2; . . . ; cN Þ
pðc1Þ � � � pðcN Þ

¼ N1! � � �ND!pðm1; m2; . . . ; mDÞ
N !PN1

1 � � � PND
D

¼: qðm1; :::; mDÞ

Therefore,

pðc1; . . . ; cN jx1; . . . ; xN Þ
/ pðc1jx1Þ � � � pðcN jxN Þqðc1; c2; . . . ; cN Þ ð9Þ
/ pðc1jx1Þ � � � pðcN jxN Þqðm1; m2; . . . ; mDÞ ð10Þ

3.3. Observations and simplifications

Direct implementation of the proposed algorithm is

difficult due to the computational complexity. In the
application of WBC identification, simplification is

possible. We observed the following: First, we are pri-

marily concerned with the class of blast, whose presence
has clinical significance. Secondly, we only confuse blast

with the class of lymphocyte. (The difference in appear-

ances between these two classes can be very subtle.) In

other words, for a potential blast, pðblastjxÞ � 0,

pðlymphocytejxÞ � 0, pðany other classjxÞ � 0. Finally,
we are fairly certain about the classification of all

other classes, i.e., pða certain classjxÞ � 1, pðany other
classjxÞ � 0. Based on the above observations, we can
simplify the algorithm, instead of doing an exhaustive

search.

Let pdi ¼ pðci ¼ djxiÞ, i ¼ 1; . . . ;N . More specifically,
let pBi ¼ pðblastjxiÞ, pLi ¼ pðlymphocytejxiÞ and p�i ¼
pðclass � jxiÞ where � is any class but blast. Suppose
there are K potential blasts. Order the pB1 ; p

B
2 ; . . . ; p

B
K �s

in a descending manner over i, such that pB1 P pB2
P � � � P pBK . Then the probability that there are k blasts
is

PBðkÞ ¼ pB1 � � � pBk pLkþ1 � � � pLKp�Kþ1 � � � p�N

q mB

�
¼ k

N
; mL ¼ m0L þ

K � k
N

; m3; . . . ; mD

	

where m0L is the proportion of unambiguous lymphocytes
and m3; . . . ; mD are the proportions of the other cell types.
We pick the optimal number of blasts k� that maxi-

mizes PBðkÞ, k ¼ 1; . . . ;K.

3.4. The algorithm and complexity

Step 1: Estimate qðm1; . . . ; mDÞ from the database, for
d ¼ 1; . . . ;D.
Step 2: Compute the object-by-object ‘‘no context’’

posterior probability pðcijxiÞ, i ¼ 1; . . . ;N , and

ci 2 f1; . . . ;Dg.
Step 3: Compute PBðkÞ and find k� for k ¼ 1; . . . ;K,
and relabel the cells accordingly.

We would like to point out that the number of terms

to compute and compare drops from DN to 2N after
simplification, and further to N after ordering.

3.5. Results

The algorithm has been intensively tested at IRIS,

Inc. on the specimens obtained at Harbor UCLA

Medical Center. We compare the performances with and
without using contextual information on blood samples

from 220 specimens (consisting of 13,200 cells). In about

50% of the cases, a false alarm would have occurred had

context not been used. Most cells are correctly classified,

but a few are incorrectly labeled as immature cells,

which raises a flag for the doctors. Change of the clas-

sification of the specimen to abnormal requires expert

intervention before the false alarm is eliminated, and
it may cause unnecessary expenses and worry. When

context is applied, the false alarms for most of the

Table 3

Features extracted from cell images

Feature

number

Feature description

1 Cell area

2 Number of pixels on cell edge

3 The 4th quantile of red–blue distribution

4 The 4th quantile of green–red distribution

5 The median of red–blue distribution

6 The median of green–red distribution

7 The median of blue–green distribution

8 The standard deviation of red–blue distribution

9 The standard deviation of green–red distribution

10 The standard deviation of blue–green distribution

11 The 4th quantile of red distribution

12 The 4th quantile of green distribution

13 The 4th quantile of blue distribution

14 The median of red distribution

15 The median of green distribution

16 The median of blue distribution

17 The standard deviation of red distribution

18 The standard deviation of green distribution

19 The standard deviation of blue distribution

20 The standard deviation of the distance from the edge to

the mass center
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specimens were eliminated, and no false negative was

introduced (Table 4).

4. Incorporating context into urinalysis

4.1. Introduction

Urine is one of the most complex body fluid speci-
mens: it potentially contains about 60 meaningful types

of elements. Examination of the urine sediment plays a

critical role in urinalysis. It detects the presence of ele-

ments that often provide early diagnostic information

concerning dysfunction, infection, or inflammation of

the kidneys and urinary tract. Thus this non-invasive

technique can be of great value in clinical case man-

agement. Traditional microscopic urinalysis systems rely
on human operators who read the samples visually and

identify them, and thus is time consuming, labor inten-

sive and difficult to standardize. Automated microscopy

of all specimens is more practical than manual micro-

scopy because it eliminates variation among different
technologists. This becomes more pronounced when the

same technologist examines increasing numbers of

specimens. Also, it is less labor intensive and thus less

costly than manual microscopy. It also provides more

consistent and accurate results.

An automated urinalysis system workstation (The

YellowIRISTM, IRIS, Inc.) has been introduced in nu-
merous clinical laboratories for automated microscopy.
Urine samples are processed and examined at �100 (low
power field) and �400 magnifications (high power field)
with bright-field illumination. The YellowIRISTM auto-
mated system collects video images of formed elements

in a stream of uncentrifuged urine passing an optical

assembly. These images are given to a computer algo-

rithm for automatic identification.

Among the elements (analytes) found in microscopic
urinalysis are various casts, epithelial cells, blood cells

(including both white and red blood cells), crystals, as

well as other elements including bacteria, yeast. Fig. 4

shows some analyte examples. Some of the analytes

found in urine are pathological. There is a range of

counts of these analyte types within which a specimen is

considered normal. A specimen is abnormal if the

counts of one or more these types fall out of their
ranges.

Context is rich in urinalysis and plays a crucial role in

analyte classification [27]. Some combinations of rea-

sonable analytes are more likely than others. For

Table 4

Comparison of with and without using contextual information

Methods Cell classi-

fication

Normality

identification

False

positive

False

negative

No context 88% �50% �50% 0%

With context 89% �90% �10% 0%

Fig. 4. Examples of some of the analyte images.
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instance, the presence of bacteria indicates the presence

of WBCs, since bacteria tend to cause infection and thus

trigger the production of more WBCs. Squamous epi-

thelial cells can appear both flat or rolled up. If squa-

mous epithelial cells in one form are detected, then it is

likely that there are squamous epithelial cells in the

other form. WBC clusters in the low power field usually

indicate WBCs in high power field. Utilizing such con-
text will hopefully improve classification accuracy.

The task of automated microscopic urinalysis is,

given a urine specimen that consists of up to a few

hundred images of analytes, to classify each analyte into

one of the classes.

Similar to the WBC identification task discussed in

the previous chapter, the automated urinalysis consists

of the following steps: image processing and feature
extraction, learning and pattern recognition, and con-

text incorporation. The first two steps are very similar to

that of the WBC identification, therefore these details

will not be discussed. Table 5 gives a list of features

extracted from analyte images. 3 The classes we are

looking at are artifacts, bacteria, calcium oxalate crys-

tals, red blood cells, WBCs, budding yeast, amorphous

crystals, and uric acid crystals. All these analytes are in
the high power field.

The form of context in urinalysis, especially the fact

that context is contained in the presence of some types

of analytes, makes it well suited for the framework

discussed in Section 2.2. The context A is the presence of
several relevant classes. The criteria for relevance will be

discussed in Section 4.2. The maximum posterior deci-

sion rule chooses class label ĉci for element i such that
ĉci ¼ argmax

ci
pðcijxi;AÞ.

4.2. Identification of relevant classes

Not all classes are relevant in terms of carrying con-

textual information. We propose three criteria based on

which we can systematically investigate the relevance of

the class presence.

The first criterion is the correlation coefficient be-
tween the presence of any two classes. One type of

analyte is considered relevant to another if the absolute

value of their correlation coefficient is beyond a certain

threshold. The graph in Fig. 5 illustrates the relevance

between any two analyte types according to various

thresholds. In this figure, two types are related or rele-

vant to each other only if their nodes are connected by a

line. The solid lines correspond to threshold 0.25 and the
added dotted lines to 0.10. Not surprisingly, lowering

the threshold leads to more relevant classes. It shows

that uric acid crystals, budding yeast and calcium oxa-

late crystals are not relevant to any other types even by a

generous threshold of 0.10.

The second criterion is the classical mutual informa-

tion Iðc;AdÞ between the presence of a class Ad and the

class probability pðcÞ. The bigger the mutual informa-
tion between the presence of a class and the class dis-

tribution, the more relevant this class is. Ranking the

analyte types in terms of Iðc;AdÞ in a descending manner
gives rise to the following list: bacteria, amorphous

crystals, artifact, red blood cells, WBCs, uric acid crys-

tals, budding yeast and calcium oxalate crystals. The

relevance level decreases in the list.

The third criterion is what we call the expected rela-
tive entropy D½cjjAd � between the presence of a class Ad

and the labeling probability pðcÞ, defined as

D½cjjAd � ¼ P ðAd ¼ 1ÞD½pðcÞjjpðcjAd ¼ 1Þ�
þ P ðAd ¼ 0ÞD½pðcÞjjpðcjAd ¼ 0Þ�

Table 5

Features extracted from urine anylates images

Feature

number

Feature description

1 Area

2 Length of edge

3 Square root of area=length of edge

4 ðStandard deviation=meanÞ of distance from center to
edge

5 k1=k2
6 Sum of length of two longest straight edges=

total length of edge

7 Sum of length of four longest straight edges=

total length of edge

8 Sum of length of two longest semi-straight edges=

total length of edge

9 Sum of length of four longest semi-straight edges=

total length of edge

10 The mean of red distribution

11 The mean of blue distribution

12 The mean of green distribution

13 15th percentile of gray level histogram

14 85th percentile of gray level histogram

15 The standard deviation of gray level intensity

16 Energy of the Laplacian transformation of gray level

image

3 k1 and k2 are respectively the bigger and the smaller eigenvalues of
the second moment matrix of an image. Fig. 5. Relevant classes.
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where

D½pðcÞjjpðcjAd ¼ 1Þ�

¼
XD
i¼1

pðc ¼ ijAd ¼ 1Þ ln
pðc ¼ ijAd ¼ 1Þ

pðc ¼ iÞ

� 	

and

D½pðcÞjjpðcjAd ¼ 0Þ�

¼
XD
i¼1

pðc ¼ ijAd ¼ 0Þ ln
pðc ¼ ijAd ¼ 0Þ

pðc ¼ iÞ

� 	

Similarly, ranking the analyte types in terms of DðcjjAdÞ
in a descending manner gives rise to the following list:

bacteria, artifact, red blood cells, amorphous crystals,

WBCs, calcium oxalate crystals, budding yeast and uric
acid crystals.

Thresholding correlation coefficient explores the

pairwise relevance of classes, whereas mutual informa-

tion and expected relative entropy indicate the general

relevance of a class to all other classes in an expectation

sense. All three criteria lead to similar conclusions re-

garding the relevance of all classes.

4.3. The algorithm

Once we identify the M relevant classes, we use the

following algorithm to incorporate partial context.

Step 0: Estimate for the database the priors pðcjAdÞ
and pðcÞ, for c 2 1; 2; . . . ;D and d 2 1; 2; . . . ;D.
Step 1: For a given xi, compute pðcijxiÞ for ci ¼
1; 2; . . . ;D, which are the outputs of the trained neu-
ral network.

Step 2: Let the M relevant classes be R1; . . . ;RM . Ac-
cording to the no context pðcijxiÞ and certain criteria
for detecting the presence or absence of all the rele-

vant classes, get AR1 ; . . . ;ARM .

Step 3: Let pðcijxi;A0Þ ¼ pðcijxiÞ, where A0 is the
null element. Then, for m ¼ 1–M , iteratively com-
putepðcijxi;A0; . . . ;ARm�1 ;ARmÞ ¼ pðcijxi;A0; . . . ;ARm�1Þ�
ðpðcijARmÞpðARmÞÞ=pðcÞ.
Step 4: Label the objects according to the final
context-containing pðcijxi;AR1 ; . . . ;ARM Þ, i.e., ĉci ¼
argmax

ci
pðcijxi;AR1 ; . . . ;ARM Þ for i ¼ 1; . . . ;N .

This algorithm is invariant with respect to the ordering

of the M relevant classes in ðA1; . . . ;AMÞ.

4.4. Results

The algorithm using partial context was tested on a

database with 83 urine specimens that contains 20,276

analyte images. Four classes are considered relevant

according to the criteria described in Section 4.2: bac-
teria, red blood cells, WBCs and amorphous crystals.

We measure two types of error: analyte-by-analyte

error, and specimen diagnostic error. The error means

and standard deviations are derived from 50 bootstrap

samples of 75 specimens out of the original set of 83

specimens. The average analyte-by-analyte error is re-

duced from 44.48% before using context to 36.66% after,

resulting a relative error reduction of 17.6% (Table 6).
The diagnosis for a specimen is either normal or ab-

normal. Tables 7 and 8 compare the diagnostic perfor-

mance with and without using context, and Table 9 lists

the relative changes. We can see using context signifi-

cantly increases correct diagnosis for both normal and

abnormal specimens, and reduces both false positive and

false negative.

5. Discussions

This paper has addressed the question of contextual

information fusion. A straight-forward use of com-

pound Bayesian theory is theoretically elegant and is

optimal in terms of error probability and information

gain. When applied to the problem of WBC image rec-
ognition, it significantly reduces false alarm rate and

thus greatly reduces the cost due to expensive clinical

Table 6

Comparison of using and not using contextual information for ana-

lyte-by-analyte error

Without context With context

Average element-

by-element error

44:48� 1:14% 36:66� 0:97%

Table 7

Diagnostic confusion matrix not using context

Estimated normal Estimated abnormal

Truly normal 40.96� 1.69% 7.23� 0.94%
Truly abnormal 19.28� 1.18% 32.53� 1.80%

Table 8

Diagnostic confusion matrix using context

Estimated normal Estimated abnormal

Truly normal 42.17� 1.89% 6.02� 0.80%
Truly abnormal 16.87� 1.15% 34.94� 1.85%

Table 9

Relative accuracy improvement (diagonal elements) and error reduc-

tion (off diagonal elements) in the diagnostic confusion matrix by using

context

Estimated normal Estimated abnormal

Truly normal þ2.95� 1.21% �16.73� 7.2%
Truly abnormal �12.50� 2.65% þ7.41� 1.67%
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tests. However, its exponential computational com-
plexity makes it intractable for many real world prob-

lems. An effective and yet computationally linear

method has been formulated. This approach explicitly

derive contextual information, and fuse it with the

measurements of the object of interest. It is object-cen-

tered, and naturally leads to an iterative procedure

which typically converges in a few rounds. When applied

to the problem of microscopic urinalysis, it significantly
improves correct classification rate and reduces false

alarm as well as false negative rate.

Since for the second approach we need to explicitly

derive context, we are faced with the issue of identifying

contextual relevant variables and defining relevancy

measures. Aside from the ones proposed in this paper,

another approach to identify contextual relevancy is by

learning the structure of a Belief Network from data [2–
4,7,11,14,20,22]. This is among the future topics for this

research. Other future topics include extracting contex-

tually relevant features, and identifying hidden context

(e.g., speaker gender for speech recognition).
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