JOURNAL OF COMPLEXITY 10, 165-178 (1994)

Learning from Hints*
YASER S. ABU-MOSTAFA

Departments of Electrical Engineering and Computer Science, California Institute of
Technology, Pasadena, California 91125

Received October 1, 1992

DEDICATED TO JOSEPH F. TRAUB ON THE OCCASION OF HIS 60TH
BIRTHDAY

We present a systematic method for incorporating prior knowledge (hints) into
the learning-from-examples paradigm. The hints are represented in a canonical
form that is compatible with descent techniques for learning. All the hints are fed
to the learning process in the form of examples, and examples of the function are
treated on equal footing with the rest of the hints. During learning, examples from
different hints are selected for processing according to a fixed or adaptive sched-
ule. Fixed schedules specify the relative emphasis of each hint, and adaptive
schedules are based on how well each hint has been learned so far. We discuss
adaptive minimization which is based on estimates of the overall learning error.
© 1994 Academic Press, Inc.

1. INTRODUCTION

It is evident that learning from examples needs all the help it can get.
When an unknown function f is represented to us merely by a set of
examples, we are faced with a dilemma. We want to use a model that is
sophisticated enough to have a chance of simulating the unknown func-
tion, yet simple enough that a limited set of examples will suffice to
“tune’’ it properly. These two goals are often on a collision course.

One established method of tackling this problem is regularization
(Akaike, 1969). 1t is an attempt to start out with a sophisticated model and
then restrict it during the learning process to fit the limited number of
examples we have. Thus we have a simple model in disguise, and we

* This research was supported by the AFOSR under Grant F49620-92-J-0398.

165
0885-064X/94 $6.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

166 YASER S. ABU-MOSTAFA

make it as simple as warranted by the resources. The hope is that the
restriction (simplification) of the model has not rendered f impossible to
simulate, and the justification is that this is the best we can do anyway
given a limited set of examples.

Another method for tackling the problem is the use of hints (Abu-
Mostafa, 1990, 1993) as a learning aid. Hints describe the situation where,
in addition to the set of examples of f, we have prior knowledge of certain
facts about f. We use this side information to our advantage. However,
hints come in different shapes, and the main difficulty of using them is the
lack of a systematic way of incorporating heterogeneous pieces of infor-
mation into a manageable learning process. If what we know about fis
that it is scale-invariant, monotonic over part of its domain, and repre-
sented by a given set of examples, we still have to integrate this informa-
tion before we can learn the function. This paper concerns itself with the
development of a systematic method that integrates different types of
hints in the same learning process.

The distinction between regularization and the use of hints is worth
noting. Regularization restricts the model in a way that is not based on
known facts about f. Therefore, f may be implementable by the original
model, but not by the restricted model. In the case of hints, if the unre-
stricted model was able to implement f, so would the model restricted by
the hints, since f cannot be excluded by a litmus test that it is known to
satisfy. We can apply any number of hints to restrict the model without
risking the exclusion of f. The use of hints does not preclude, nor does it
require, the use of any form of regularization.

How to take advantage of a given hint can be an art just like how to
choose a model. In the case of invariance hints for instance, preprocess-
ing of the input can achieve the invariance through normalization, or the
model itself can be explicitly structured to satisfy the invariance (Minsky
and Papert, 1969). Whenever such a method of direct implementation is
feasible, the full benefit of the hint is automatically realized. This paper
does not attempt to offer a superior alternative to direct implementation.
However, when direct implementation is not an option, we prescribe a
systematic method for incorporating practically any hint in any descent
method for learning. The goal is to automate the use of hints in learning to
a degree where we can effectively use a large number of simple hints that
may be available in a practical situation.

We start by introducing the basic nomenclature and notation. The envi-
ronment X is the set on which the unknown function f is defined. The
points in the environment are distributed according to some probability
distribution P. ftakes on values from some set Y,

ffX—>Y,

LEARNING FROM HINTS 167

Often, Y is just {0, 1} or the interval [0, 1]. The learning process takes
pieces of information about (the otherwise unknown) f as input and pro-
duces a hypothesis g

g X—->Y

that attempts to approximate f. The degree to which a hypothesis g is
considered an approximation of fis measured by a distance or “‘error,”

E(g, f).

The error E is based on the disagreement between g and f as seen through
the eyes of the probability distribution P.
Two popular forms of the error measure are

E = Prlg(x) # f(x)]
and
E = ¢l(g(x) — fx)4,

where Pr[.] denotes the probability of an event, and ¢[.] denotes the
expected value of a random variable. The underlying probability distribu-
tion is P. E is always a non-negative quantity, and we take E(g, f) = 0 to
mean that g and f are identical for all intents and purposes. We also
assume that when the set of hypotheses is parameterized by real-valued
parameters (e.g., the weights in the case of a neural network), E is well-
behaved as a function of the parameters (in order to allow for derivative-
based descent methods). We make the same assumptions about the error
measures that will be introduced in section 2 for the hints.

In this paper, the ‘‘pieces of information’’ about f that are input to the
learning process will be more general than those in the learning from
examples paradigm. In that paradigm, a number of points x;, . . . , xy
are picked from X (usually independently according to the probability
distribution P) and the values of f on these points are provided. Thus, the
input to the learning process is the set of examples

(x1, f(x)), . . o, (xN, flxn)

and these examples are used to guide the search for a good hypothesis. In
this paper, we consider the set of examples of fas only one of the avail-
able hints and denote it by Hy. The other hints H,, . . . , Hy are addi-
tional known facts about f, such as invariance properties for instance.

168 YASER S. ABU-MOSTAFA

The paper is organized as follows. Section 2 develops a canonical
method for representing different hints. This is the first step in dealing
with any hint that we encounter in a practical situation. Section 3 lays the
foundations for learning from hints in general, and Section 4 presents
specific implementations and experimental results. We discuss the overall
picture in the conclusion.

2. REPRESENTATION OF HINTS

We have so far described what a hint is in very general terms such as “*a
known property of £’ or ‘‘a fact about f.”’ Indeed, all that is needed to
qualify as a hint for our purposes is to have a litmus test that fpasses and
that can be applied to the set of hypotheses. In other words, a hint H,, is
formally a subset of the hypotheses, namely those satisfying the hint.

This definition of H,, can be extended to a definition of ‘‘approximation
of H,,”’ in several ways. For instance, g can be considered to approximate
H,, within ¢ if there is a function 4 that strictly satisfies H,, for which E(g,
h) = . In the context of learning, it is essential to have a notion of
approximation since exact learning is seldom achievable. Our definitions
for approximating different hints will be part of the scheme for represent-
ing those hints.

The first step in representing H,, is to choose a way of generating
“‘examples’” of the hint. For illustration, suppose that H,, asserts that

fl-1 +1l— [0, +1]
is an odd function. An example of H,, would have the form

fl=x) = —f(x)

for a particular x € [—1, +1]. To generate N examples of this hint, we
generate x;, . . . , xy and assert for each x, that f(—x,) = —f(x,). Sup-
pose that we are in the middle of a learning process, and that the current
hypothesis is g when the example f(—x) = —f(x) is presented. We wish to
measure how much g disagrees with this example. This leads to the sec-
ond component of the representation, the error measure e, . For the
oddness hint, e,, can be defined as

em = (g(x) + g(=x))
so that e,, = 0 reflects total agreement with the example (i.e., g(—x) =

—g(x)). The form of the examples of H,, and the choice of the error
measure e,, are not unique.

LEARNING FROM HINTS 169

Once the disagreement between g and an example of H,, has been
quantified through e,,, the disagreement between g and H,, as a whole is
automatically quantified through E,,, where

E, = %(e,)

The expected value is taken w.r.t. the probability rule for picking the
examples. This rule is also not unique. Therefore, E,, depends on our
choices in all three components of the representation; the form of exam-
ples, the probability distribution for picking the examples, and the error
measure e,,. Our choices are guided by certain properties that we want E,,
to have. Since E,, is supposed to measure the disagreement between g and
the hint, E,, should be zero when g is identical to f.

E=0E,=0

This is a necessary condition for E,, to be consistent with the assertion
that the hint is satisfied by f (recall that £ is the error between g and f
w.r.t. the original probability distribution P on the environment X').

Why is this condition necessary? Consider our example of the odd
function £, and assume that the set of hypotheses contains even functions
only. However, fortunately for us, the probability distribution P is uni-
form over x € [0, 1] and is zero over x € [—~1, 0). This means that fcan be
perfectly approximated using an even hypothesis. Now, what would hap-
pen if we try to invoke the oddness hint? If we generate x according to P
and attempt to minimize E,, = €[(g(x) + g(—x))%], we will move towards
the all-zero g (the only odd hypothesis), even if E(g, f) is large for this
hypothesis. This means that the hint, in spite of being valid, has taken us
away from the good hypothesis. The problem of course is that, for the
good hypothesis, E is zero while E,, is not. In other words, E,, does not
satisfy the above consistency condition.

There are other properties that E, should have. Suppose we pick a
representation for the hint that results in E,, being identically zero for all
hypotheses. This is clearly a poor representation in spite of the fact that it
automatically satisfies the consistency condition! The problem with this
representation is that it is extremely weak (every hypothesis ‘‘passes the
E,, = O test” even if it completely disagrees with the hint). In general, E,,
should not be zero for hypotheses that disagree (through the eyes of P)
with H,,, otherwise the representation would be capturing a weaker ver-
sion of the hint. On the other hand, we expect E,, to be zero for any g that
does satisfy H,,, otherwise the representation would be stronger than the
hint itself since we already have E,, = 0 when g = f.

On the practical side, there are other properties of the representation
that are desirable. The probability rule for picking the examples should be

170 YASER S. ABU-MOSTAFA

as closely related to P as possible. The examples should be picked inde-
pendently in order to have a good estimate of E,, by averaging the values
of e,, over the examples. Finally, the computation effort involved in the
descent of ¢,, should not be excessive. In what follows, we illustrate these
ideas by constructing representations for different types of hints.

Perhaps the most common type of hint is the invariance hint. This hint
asserts that f(x) = f(x') for certain pairs x, x’. For instance, ‘‘f is shift-
invariant’’ is formalized by the pairs x, x ' that are shifted versions of each
other. To represent the invariance hint, an invariant pair (x, x’) is picked
as an example. The error associated with this example is

em = (g(x) — g(x"))

A plausible probability rule for generating (x, x') is to pick x and x'
according to the original probability distribution P conditioned on x, x’
being an invariant pair.

There is another way to use the invariance hint that is particular to this
type of hint. We can transform the examples of f itself in an invariant
way, thus generating new examples of f. How well do these examples
capture the hint? The transformed examples represent a restricted version
of the invariance (restricted to the subset of the environment defined by
the examples of). On the other hand. the transformation takes advan-
tage of the probability distribution that was used to generate the examples
of f, which is usually the target distribution P. Using the invariance in this
way and using it as an independent hint (represented to the learning
process by its own examples) are not mutually exclusive.

Another related type of hint is the monotonicity hint (or inequality
hint). The hint asserts for certain pairs x, x’ that f(x) = f(x’). For in-
stance, ‘‘f is monotonically nondecreasing in x”’ is formalized by all pairs
x, x" such that x = x’. To represent a monotonicity hint, an example (x,
x') is picked, and the error associated with this example is

rmﬂ—gumz if g(x) > g(x")
€y =
0 if g(x) < g(x)

It is worth noting that the set of examples of fcan be formally treated as
a hint, too. Given (x;, f(x))), . . . ,(xn, f(xy)), the examples hint asserts
that these are the correct values of fat these particular points x,. Now, to
generate an ‘‘example’’ of this hint, we independently pick a number n
from 1 to N and use the corresponding (x,, f(x,)) (Fig. 1). The error
associated with this example is ey (we fix the convention that m = 0 for the
examples hint),

€9 = (g(xn) - f(xn))z-

LEARNING FROM HINTS 171

Choose x (xp.f(x;) Choose n
at random at random
{ Xy S (Xz)]
i
|
: — (X, f,))
[
1
1
{
{(xy. flay)
FiG. 1. Examples of the function as a hint.

Assuming that the probability rule for picking # is uniform over {1, . . . ,
N},

N
Eo = %(ep) = < O, (g(x,) — flx,))?
n=1

2=

In this case, E, is also the best estimator of E = €[(g(x) — f(x)?] given
X, . . ., xy that are independently picked according to the original
probability distribution P. This way of looking at the examples of fjusti-
fies their treatment exactly as one of the hints, and underlines the distinc-
tion between E and F.

Another type of hint is the approximation hint. The hint asserts for
certain points x € X that f(x) € {a,, b,]. In other words, the value of fat x
is known only approximately. The error associated with an example x of
the approximation hint is

(gx) —a) ifgl) <a
€m = (g(x) - bx)z lf g(X) > bx
0 if g(x) € [a,, b,].

The final type of hints that we discuss here arises when the learning
model allows non-binary values for g where fitself is known to be binary.
This gives rise to the binary hint (or Boolean hint). Let X C X be the set
where f is known to be binary (for Boolean functions, X is the set of
binary input vectors). The binary hint is represented by examples of the
form x, where x € X. The error function associated with an example x

172 YASER S. ABU-MOSTAFA
(assuming 0/1 binary convention, and assuming g(x) € [0, 1]) is
em = g(x)(1 — g(x))

This choice of ¢, forces it to be zero when g(x) is either 0 or 1, while it
would be positive if g(x) is between 0 and 1. A natural probability rule for
generating the examples is to pick x according to the original probability
distribution P conditioned on x € X.

In a practical situation, we try to infer as many hints about f as the
situation allows. Next, we represent each hint according to the guidelines
discussed in this section. This leads to a list Hy, H,, . . . , Hy of hints
that are ready to produce examples upon the request of the learning
algorithm. We now address how the algorithm should pick and choose
between these examples as it moves along.

3. LEARNING SCHEDULES

If the learning algorithm had complete information about f, it would
search for a hypothesis g for which E(g, f) = 0. However, f being un-
known means that the point £ = 0 cannot be directly identified. The most
any learning algorithm can do given the hints Hy, H;, . . . , Hy is to
reach a hypothesis g for which all the error measures Eg, E,, . . . , Ey
are zeros. Indeed, because of the consistency condition, £ = 0 implies
that E,, = 0 for all m.

If that point is reached, regardless of how it is reached, the job is done.
However, it is seldom the case that we can reach the zero-error point
because either (1) it does not exist (i.e., no hypothesis can satisfy all the
hints simultaneously, which implies that no hypothesis can replicate f
exactly), or (2) it is difficult to reach (i.e., the computing resources do not
allow us to exhaustively search the space of hypotheses looking for this
point). In either case, we have to settle for a point where the E,,’s are ‘‘as
small as possible.””

How small should each E,, be? A balance has to be struck, otherwise
some E,’s may become very small at the expense of the others. This
situation would mean that some hints are over-learned while the others
are under-learned. Knowing that we are really trying to minimize E, and
that the E,’s are merely a vehicle to this end, the criterion for balancing
the E,’s should be based on how small E is likely to be as far as we can
tell.

It is important to djstinguish between the quality of the hints and the
quality of the learning algorithm that uses these hints. The quality of the
hints is determined by how reliably we can predict that E will be close to

LEARNING FROM HINTS 173

zero for a given hypothesis based merely on the fact that Fy, E,, . . . ,
E), are close to zero for that hypothesis. The quality of the algorithm is
determined by how small Eq, E,,. . . , Epare likely to be for the hypoth-
esis that will be produced by the algorithm within a reasonable time.

What any learning algorithm does in effect is to minimize the E,’s
simultaneously. In order to discuss different algorithms in the right con-
text, we first explore how simultancous minimization of a number of
quantities is done. Perhaps the most common method is that of penalty
functions (Wismer and Chattergy, 1978). In order to minimize E,
E,, . . ., Ey, we minimize the penalty function

where each «,, is a non-negative number that may be constant (exact
penalty function) or variable (sequential penalty function). Any descent
method can be employed to minimize the penalty function once the a,,’s
are selected. The «,,'s are weights that reflect the relative emphasis or
“‘importance’’ of the corresponding E,’s. The choice of the weights is
usually crucial to the quality of the solution.

Even if the «,,’s are determined, we still do not have the explicit values
of the E,’s (recall that E,, is the expected value of the error ¢, on an
example of the hint). Instead, we estimate E,, by drawing several exam-
ples and averaging their error. Suppose that we draw N, examples of H,,.
The estimate for E,, would then be

L5

)

€m >
Nm n=1

where e\’ is the error on the nth example. Consider a batch of examples

consisting of Ny examples of Hy, N, examples of H;, . . . , and Ny
examples of Hy. The total error of this batch is

N

3

INgES

e
On

3
I
[

If we take N, < a,,, this total error will be a proportional estimate of the
penalty function

M
Z an, E,,.

m=0

174 YASER S. ABU-MOSTAFA

In effect, we translated the weights into a schedule, where different hints
are emphasized, not by magnifying their error, but by representing them
with more examples.

We make a distinction between a fixed schedule, where the number of
examples of each hint in the batch is predetermined (albeit time-invariant
or time-varying, deterministic or stochastic), and an adaptive schedule
where run-time determination of the number of examples is allowed (how
many examples of which hint go into the next batch depends on how
things have gone so far). For instance, constant «,,’s correspond to a fixed
schedule. Even if the «,,’s are variable but predetermined, we still get a
fixed (time-varying) schedule. When the «,,’s are variable and adaptive,
the resulting schedule is adaptive.

Finally, we can use uniform batches that consist of N examples of one
hint at a time, or, more generally, mixed batches where examples of
different hints are allowed within the same batch. If we are using a linear
descent method with a small learning rate, a schedule that uses mixed
batches is equivalent to a schedule that alternates between uniform
batches (with frequency equal to the frequency of examples in the mixed
batch). Figure 2 shows a fixed schedule that alternates between uniform
batches giving the examples of the function (E) twice the emphasis of the
other hints (E, and E,). The schedule defines a turn for each hint to be
learned. If we are using a nonlinear descent method, it is generally more

descend

E,

descend
on

E,

descend
on

E;

descend
on

Eg

F1G. 2. A fixed schedule for learning.

LEARNING FROM HINTS 175

difficult to ascertain a direct translation from mixed batches to uniform
batches, but there may be compelling heuristic correspondences.

4. IMPLEMENTATIONS

In this section, we discuss different algorithms that use fixed and adap-
tive schedules to learn from hints. We introduce some easy-to-implement
schedules. We also report experimental results about how hints affect
learning.

The implementation of a given schedule (expressed in terms of uniform
batches for simplicity) goes as follows: (1) The algorithm decides which
hint (whichmform =0, 1,. . . , M) to work on next, according to some
criterion; (2) the algorithm then requests a batch of examples of this hint;
(3) it performs its descent on this batch; and (4) when it is done, it goes
back to step 1. For fixed schedules, the criterion for selecting the hint can
be ‘evaluated’ ahead of time, while for adaptive schedules, the criterion
depends on what happens as the algorithm runs.

The following schedules were tested experimentally. We first describe
the schedules and then report the results of the experiment.

Simple rotation. This is the simplest possible schedule that tries to
balance between the hints. It is a fixed schedule that rotates between Hy,
H,,. . ., Hy. Thus, at step k, a batch of N examples of H,, is processed,
where m = k mod (M + 1). This simple-minded algorithm tends to do well
in situations where the E,,’s are somewhat similar.

Weighted rotation. This is the next step in fixed schedules that tries to
give different emphasis to different E,’s. The schedule rotates between
the hints, visiting H,, with frequency »,,. The choice of the »,’s can
achieve balance by emphasizing the hints that are more important or
harder to learn. The schedule of Fig. 2 is a weighted rotation with v, = 0.5
and vV = V= 0.25.

Maximum error. This is the simplest adaptive schedule that tries to
achieve the same type of balance as simple rotation. At each step &, the
algorithm processes the hint with the largest error E,,. The algorithm uses
estimates of the E,,’s to make its selection.

Maximum weighted error. This is the adaptive counterpart to
weighted rotation. It selects the hint with the largest value of »,,E,,. The
choice of the »,,’s can achieve balance by making up for disparities be-
tween the numerical values of the E,’s. Again, the algorithm uses esti-
mates of the E,’s.

176 YASER S. ABU-MOSTAFA

Adaptive schedules attempt to answer the question: Given a set of
values for the E,,’s, which hint is the most under-learned? The above
schedules answer the question by comparing the individual E,’s. The
adaptive minimization schedule answers the question by relating the E,,’s
to the actual error E.

Adaptive minimization. Given the estimates of Ey, E,, . . . , Ey,
make M + 1 estimates of E, each based on all but one of the hints:

E@® E . Ey, ..., Ey
E(EOs .9 EZ, s e ey EM)
E(Ey, E,®, ..., Ey)
E(EO, El, EZs ... s.)

and choose the hint for which the corresponding estimate is the smallest.

In other words, E becomes the common thread between the E,,’s. If we
use mixed batches, this translates to minimizing

EEy, Ei, Ery . . ., Ey)

which has a gradient of

Therefore, in gradient descent, the mixed batch would have examples
from each hint in proportion to oE/JE,,.

We ran a simple experiment to test the impact of hints on learning. We
used basic gradient descent on a feed-forward neural network (back-prop-
agation algorithm; Rumelhart er al., 1986). The function f: {—1, +1}¥ —
{0, 1} is defined by

f(x,, e

{1 if ~A <2} x,<A
, Xg) = .
0 otherwise,
where A is chosen to make Pr(f = 1) = Pr(f = 0) = 0.5. The input
probability distribution P is uniform on [—1, +1]%. The function fis both
even and invariant under cyclic shift.

The network had 31 weights and thresholds (8-3-1 architecture). We
ran the experiment for different training set sizes (20, 40, 80, 160, 320)

LEARNING FROM HINTS 177

with no hints, evenness hint only, shift-invariance hint only, and both
hints. In each of the 20 cases, we executed 100 runs and averaged the test
error for all the runs in which the training set error went below 0.01,
which happened 84% of the time. Each run consisted of 10,000 iterations,
with each iteration being a uniform batch of 20 examples of either the
function or one of the hints. We used the maximum-error schedule. The
following table lists the test errors (in percentage).

No hints Evenness Cyclic shift Both hints
20 examples 46.3992 37.3563 27.5401 21.7994
40 examples 32.9017 16.0796 6.5705 2.3048
80 examples 10.1343 5.0666 2.1079 1.6349
160 examples 4.9589 2.8400 1.5461 1.3603
320 examples 2.4344 1.5073 1.2545 1.1082

To contrast the impact of hints to that of regularization, we ran the
experiment again with no hints but with weight decay. We varied the
parameter of the weight decay looking for the best performance. The
resulting (percentage) test errors were 44.9690, 28.7600, 9.5683, 4.6430,
and 2.6608, corresponding to 20, 40, 80, 160, and 320 examples, respec-
tively.

5. CONCLUSION

The use of hints, under different names, is coming to the surface in a
number of research communities dealing with learning and adaptive sys-
tems. The most common complaint about hints is that they are heteroge-
neous and cannot be easily integrated into learning. This paper was writ-
ten with the specific goal of addressing this problem. The paper develops
a systematic method for using different hints as input to the learning
process. It treats all hints on equal footing, including the examples of the
function. The most important features of the method are:

1. It makes no assumptions about what type of hints we can use.
Rather, it gives a general procedure for representing the hint in a canoni-
cal way that is compatible with the common learning-from-examples para-
digm.

2. It does not restrict the descent method we use. Rather, it pro-
vides a schedule for learning that is compatible with any descent method
that may be suitable for the situation.

178 YASER S. ABU-MOSTAFA

3. Itis compatible with different models of learning, and with differ-
ent techniques (such as regularization).

As the use of hints becomes routine, we are encouraged to exploit even
the simplest observations that we may have about the function we are
trying to learn. Since most hypotheses do not usually satisfy a given hint,
the impact of hints is very strong in restricting the learning model in the
right direction.

A number of algorithms for learning from hints were discussed in this
paper. These algorithms use fixed or adaptive schedules to determine the
turn of each hint to be learned. The goal of these schedules is to achieve
balance between the errors of different hints. Adaptive schedules have
the advantage of automatically compensating against many artifacts of the
learning process. In particular, the adaptive minimization schedule is
worth noting because it is based on estimating the actual test error.

ACKNOWLEDGMENT

1 thank Ms. Zehra Cataitepe for her valuable input, especially in the experiments of
Section 4.

REFERENCES

ABU-MOSTAFA, Y. S. (1990), Learning from hints in neural networks, J. Complexity 6, 192~
198.

ABU-MOSTAFA, Y. S. (1993), A method for learning from hints, Adv. Neural Inform. Pro-
cess. Systems 8, 73-80, Morgan-Kaufmann.

AKAIKE, H. (1969), Fitting autoregressive models for prediction, Ann. Insi. Statist. Math.
21, 243-247.

Minsky, M. L., AND PaPERT, S. A. (1969), “‘Perceptrons,”” MIT Press, Cambridge, MA.

RuMELHART, D. E., Hinton, G. E., AND Wirtiams, R. J. (1986}, Learning internal repre-
sentations by error propagation, in ‘‘Parallel Distributed Processing,”” Vol. 1, pp. 318-
362, MIT Press, Cambridge, MA.

SUDDARTH, S., AND HOLDEN, A. (1991), Symbolic neural systems and the use of hints for
developing complex systems, Internat. J. Machine Stud. 38, 291.

WisMER, D. A., AND CHATTERGY, R. (1978), “‘Introduction to Nonlinear Optimization,’
North-Holland, Amsterdam.

