Outline

• The map of machine learning

• Bayesian learning

• Aggregation methods

• Acknowledgments
What is aggregation?

Combining different solutions h_1, h_2, \cdots, h_T that were trained on \mathcal{D}:

Regression: take an average

Classification: take a vote

a.k.a. ensemble learning and boosting
Different from 2-layer learning

In a 2-layer model, all units learn **jointly**:

In aggregation, they learn **independently** then get combined:
Two types of aggregation

1. **After the fact:** combines existing solutions

 Example. Netflix teams merging “blending”

2. **Before the fact:** creates solutions to be combined

 Example. Bagging - resampling \mathcal{D}
Decorrelation - boosting

Create h_1, \cdots, h_t, \cdots sequentially: Make h_t decorrelated with previous h's:

Emphasize points in \mathcal{D} that were misclassified

Choose weight of h_t based on $E_{in}(h_t)$
Blending - after the fact

For regression, $h_1, h_2, \ldots, h_T \rightarrow g(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$

Principled choice of α_t's: minimize the error on an "aggregation data set" pseudo-inverse

Some α_t's can come out negative

Most valuable h_t in the blend?