Outline

• What is overfitting?

• The role of noise

• Deterministic noise

• Dealing with overfitting
Illustration of overfitting

Simple target function

5 data points- noisy

4th-order polynomial fit

\[E_{\text{in}} = 0, \quad E_{\text{out}} \text{ is huge} \]
Overfitting versus bad generalization

Neural network fitting noisy data

Overfitting: \(E_{\text{in}} \downarrow \quad E_{\text{out}} \uparrow \)
The culprit

Overfitting: “fitting the data more than is warranted”

Culprit: fitting the noise - **harmful**
Case study

10th-order target + noise

50th-order target
Two fits for each target

Noisy low-order target

<table>
<thead>
<tr>
<th></th>
<th>2nd Order</th>
<th>10th Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{in}</td>
<td>0.050</td>
<td>0.034</td>
</tr>
<tr>
<td>E_{out}</td>
<td>0.127</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Noiseless high-order target

<table>
<thead>
<tr>
<th></th>
<th>2nd Order</th>
<th>10th Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{in}</td>
<td>0.029</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>E_{out}</td>
<td>0.120</td>
<td>7680</td>
</tr>
</tbody>
</table>
An irony of two learners

Two learners O and R

They know the target is 10th order

O chooses H_{10} \hspace{1cm} R chooses H_{2}

Learning a 10th-order target
We have seen this case

Remember learning curves?

$$\mathcal{H}_2$$

$$\mathcal{H}_{10}$$

Expected Error

Expected Error

E_{out}

E_{in}

Number of Data Points, N

Number of Data Points, N
Even without noise

The two learners \mathcal{H}_{10} and \mathcal{H}_2

They know there is no noise.

Is there really no noise?

Learning a 50th-order target