Definition of VC dimension

The VC dimension of a hypothesis set \mathcal{H}, denoted by $d_{\text{VC}}(\mathcal{H})$, is

the largest value of N for which $m_\mathcal{H}(N) = 2^N$

“the most points \mathcal{H} can shatter”

$N \leq d_{\text{VC}}(\mathcal{H}) \implies \mathcal{H}$ can shatter N points

$k > d_{\text{VC}}(\mathcal{H}) \implies k$ is a break point for \mathcal{H}
The growth function

In terms of a break point k:

$$m_H(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

In terms of the VC dimension d_{VC}:

$$m_H(N) \leq \sum_{i=0}^{d_{VC}} \binom{N}{i}$$

maximum power is $N^{d_{VC}}$
Examples

• \mathcal{H} is positive rays:

 \[d_{VC} = 1 \]

• \mathcal{H} is 2D perceptrons:

 \[d_{VC} = 3 \]

• \mathcal{H} is convex sets:

 \[d_{VC} = \infty \]
VC dimension and learning

\[d_{VC}(\mathcal{H}) \text{ is finite} \implies g \in \mathcal{H} \text{ will generalize} \]

- Independent of the learning algorithm
- Independent of the input distribution
- Independent of the target function