Multiple bins

Generalizing the bin model to more than one hypothesis:

\[h_1, h_2, \ldots, h_M \]

\[\mu_1, \mu_2, \ldots, \mu_M \]

\[\nu_1, \nu_2, \ldots, \nu_M \]
Notation for learning

Both μ and ν depend on which hypothesis h

ν is 'in sample' denoted by $E_{in}(h)$

μ is 'out of sample' denoted by $E_{out}(h)$

The Hoeffding inequality becomes:

$$\mathbb{P} \left[\left| E_{in}(h) - E_{out}(h) \right| > \epsilon \right] \leq 2e^{-2\epsilon^2 N}$$
Notation with multiple bins

h_1
$E_{\text{out}}(h_1)$
$E_{\text{in}}(h_1)$

h_2
$E_{\text{out}}(h_2)$
$E_{\text{in}}(h_2)$

h_M
$E_{\text{out}}(h_M)$
$E_{\text{in}}(h_M)$