Multiclass Boosting with Repartltlonmg

Ling LI, Learning Systems Group, Caltech

Multiclass Classification

Considering a classification problem where the set of labels is).

1 3

e Binary classification:) = {—1,+1} :

e Multiclass classification: Y ={1,..., K} : 5 7

A multiclass problem can be reduced to a collection of binary prob-
lems via approaches such as one-vs-one and one-vs-all. Most of the
approaches can be unified with an error-correcting coding matrix.!

— +

+ 4+

An example coding matrix M =

e Fach row is a codeword for a class.

e Fach column is some partition of the class labels.

e A binary classifier f; is constructed for the ¢-th partition.

e Decode F(x) = (fi(x), fa(x),..., fr(x)) to predict y,
say, with the shortest weighted Hamming distance

T M t
3o 1. 0/()

A (M(y

Multiclass Boosting

The optimal coding matrix is problem-dependent.
algorithm can dynamically generate a coding matrix:

A boosting-style

e start from an empty coding matrix,
e iteratively pick partitions and learn binary classifiers, and

e minimize a multiclass margin cost C'(F).

2)
For an example (x,y), we want

A (M(k),F(x)) > A(M(y),F(x), Vk#y.

The margin of the example (x,y) for class k is defined as

pr (x,y) = A (M(K), F(x)) = A (M(y), F(x)) .

A specific boosting algorithm, AdaBoost.ECCE, optimizes

N
— >1 >‘ e_Pk(Xnayn)
o o ;

n=1 k#yn
o /

A multiclass boosting algorithm can be deduced as gradient descent on
the margin cost.!’ To determine the t-th binary classifier f;, we try to
maximize the negative gradient at a; = 0,

IC (F)
a(lt

— Ut (]. — 28t).

o+ =0

e U; is determined by the t-th partition, and reflects the error-
correcting ability added by the ¢-th column;

e £, is the training error of the binary classifier f;.
It seems that we should maximize U, and minimize &;.

[1] Allwein, Schapire, and Singer, 2000 2] Guruswami and Sahai, 1999

Picking Partitions

For the tangram problem (left), we use straight lines (perceptrons) as
the binary classifiers with the following two partition-picking methods:

e max-cut: picks the partition with the largest Uy,

e rand-half: randomly assigns “+” to halt of the classes.

[N
o
o

The random method rand-half actu-

ally works better.

AdaBoostECC (max-cut)
AdaBoostECC (rand-half) | |

[EE
o

e Maximizing U; brings strong
error-correcting ability, but

Training cost (normalized)

e it also generates much “hard”

0 10 20 30 40
Number of iterations

binary problems.

1 Dominating partitions in the
tangram experiment: (above)
with max-cut; (below) with

rand-half

Boosting with Repartitioning

Hard problems deteriorate the binary learning as well as the negative
eradient. We need to find a better trade-off between U, and &;.

s

e The “hardness” depends on the partition and the binary learner.

e We may “ask” the binary learner for a better partition.

Repartitioning is designed to generate a better partition from the cur-
rent binary classifier.

e “L”: Given a partition, a binary classifier can be learned.
e “R”: Given a binary classifier, a better partition can be generated.

e These two steps can be carried out alternatively.

AdaBoost.ERP, which is AdaBoost. ECC with repartitioning, finds bet-
ter partitions and achieves much lower margin cost and test error.

10°

AdaBoostECC (max cut)] y
AdaBoostECC (rand-half) : SR
- - AdaBoostERP (max-2, LRL) |- W
- -~ AdaBoostERP (rand-2, LRL) |1 50T 34
——————— AdaBoostERP (rand-2, LRLR) | - |

T T
o —

T
_ =7
—_ Pd
-

I
ol

I
o
T

w
o1
T

Test error (%)

w
o
T

Training cost (normalized)

— o
—
_
=
-~ -
—
—

N
o1
T

N
o
T

=
o1

200 400 600 800 1000
Number of iterations

0 200 400 600 800 1000
Number of iterations

o

o
(@)

AdaBoostECC (max cut)
AdaBoostECC (rand-half)
- - AdaBoostERP (max-2, LRL)
(
(

w
o1

- - AdaBoostERP (rand-2, LRL) ||
——————— AdaBoostERP (rand-2, LRLR)

N w
o1 o
T T

Test error (%)

N
o
T

Training cost (normalized)

=
ol
T

102 1 1 1 1 10

0 100 200 300 400 500 0 100 200 300 400 500
Number of iterations Number of iterations

Multiclass boosting on the letter data set, with the decision stump (above)
and the perceptron (below) as the binary learner

[3] Sun, Todorovic, Li, and Wu, 2005

50

