Multiclass Boosting with Repartltlonmg

Ling LI, Learning Systems Group, Caltech

Multiclass Classification

Considering a classification problem where the set of labels is ).
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e Binary classification: ) = {—1,+1} :

e Multiclass classification: Y ={1,..., K} : 5 7

A multiclass problem can be reduced to a collection of binary prob-
lems via approaches such as one-vs-one and one-vs-all. Most of the
approaches can be unified with an error-correcting coding matrix.!
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An example coding matrix M =

e Fach row is a codeword for a class.

e Fach column is some partition of the class labels.

e A binary classifier f; is constructed for the ¢-th partition.

e Decode F(x) = (fi(x), fa(x),..., fr(x)) to predict y,
say, with the shortest weighted Hamming distance
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Multiclass Boosting

The optimal coding matrix is problem-dependent.
algorithm can dynamically generate a coding matrix:

A boosting-style

e start from an empty coding matrix,
e iteratively pick partitions and learn binary classifiers, and

e minimize a multiclass margin cost C'(F).
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For an example (x,y), we want

A (M(k),F(x)) > A(M(y),F(x), Vk#y.

The margin of the example (x,y) for class k is defined as

pr (x,y) = A (M(K), F(x)) = A (M(y), F(x)) .

A specific boosting algorithm, AdaBoost.ECCE, optimizes
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A multiclass boosting algorithm can be deduced as gradient descent on
the margin cost.!’ To determine the t-th binary classifier f;, we try to
maximize the negative gradient at a; = 0,
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e U; is determined by the t-th partition, and reflects the error-
correcting ability added by the ¢-th column;

e £, is the training error of the binary classifier f;.
It seems that we should maximize U, and minimize &;.

[1] Allwein, Schapire, and Singer, 2000 2] Guruswami and Sahai, 1999

Picking Partitions

For the tangram problem (left), we use straight lines (perceptrons) as
the binary classifiers with the following two partition-picking methods:

e max-cut: picks the partition with the largest Uy,

e rand-half: randomly assigns “+” to halt of the classes.
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The random method rand-half actu-

ally works better.

AdaBoostECC (max-cut)
AdaBoostECC (rand-half) | |
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e Maximizing U; brings strong
error-correcting ability, but

Training cost (normalized)

e it also generates much “hard”
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binary problems.

1 Dominating partitions in the
tangram experiment: (above)
with max-cut; (below) with

rand-half

Boosting with Repartitioning

Hard problems deteriorate the binary learning as well as the negative
eradient. We need to find a better trade-off between U, and &;.
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e The “hardness” depends on the partition and the binary learner.

e We may “ask” the binary learner for a better partition.

Repartitioning is designed to generate a better partition from the cur-
rent binary classifier.

e “L”: Given a partition, a binary classifier can be learned.
e “R”: Given a binary classifier, a better partition can be generated.

e These two steps can be carried out alternatively.

AdaBoost.ERP, which is AdaBoost. ECC with repartitioning, finds bet-
ter partitions and achieves much lower margin cost and test error.
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Multiclass boosting on the letter data set, with the decision stump (above)
and the perceptron (below) as the binary learner

[3] Sun, Todorovic, Li, and Wu, 2005
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