INTRODUCTION	Multiclass Boosting	Repartitioning	Experiments	Summary
000	0000000	0000	000000	

Multiclass Boosting with Repartitioning

Ling Li

Learning Systems Group, Caltech

ICML 2006

- Binary classification problems $\mathcal{Y} = \{-1, 1\}$
- Multiclass classification problems $\mathcal{Y} = \{1, 2, \ldots, \mathcal{K}\}$
- A multiclass problem can be reduced to a collection of binary problems

EXAMPLES

- one-vs-one
- one-vs-all
- Usually we obtain an ensemble of binary classifiers

INTRODUCTION	Multiclass Boosting	Repartitioning	Experiments	Summary
OOO	00000000	0000	000000	
A Unifie	D APPROACH	Allwein et al.	, 2000]	

• Given a coding matrix

$$\mathbf{M} = \begin{pmatrix} - & - \\ - & + \\ + & - \\ + & + \end{pmatrix}$$

• Each row is a codeword for a class

the codeword for class 2 is "-+"

• Construct a binary classifier for each column (partition)

 f_1 should discriminate classes 1 and 2 from 3 and 4

• Decode $(f_1(\mathbf{x}), f_2(\mathbf{x}))$ to predict

 $(f_1(\mathbf{x}), f_2(\mathbf{x})) = (+, +)$ predicts class label 4

INTRODUCTION	Multiclass Boosting	Repartitioning	Experiments	Summary
OOO	00000000	0000	000000	
CODING	MATRIX			

Error-Correcting

- If a few binary classifiers make mistakes, the correct label can still be predicted
- Assure the Hamming distance between codewords is large

$$\begin{pmatrix} - & - & - & + & + \\ - & + & + & - & + \\ + & - & + & - & - \\ (+ & + & - & + & - \end{pmatrix}$$

• Assume errors are independent

EXTENSIONS

- Some entries can be 0
- Various distance measures can be used

Multiclass Boosting

Repartitioning

EXPERIMENTS 000000 SUMMARY

MULTICLASS BOOSTING [GURUSWAMI & SAHAI, 1999]

Problems

- Errors of the binary classifiers may be highly correlated
- Optimal coding matrix is problem dependent

BOOSTING APPROACH

- Dynamically generates the coding matrix
- Reweights examples to reduce the error correlation
- Minimizes a multiclass margin cost

Introduction	Multiclass Boosting	Repartitioning	Experiments	Summary
000	0000000	0000	000000	
PROTOT	YPE			

- The ensemble $\mathbf{F} = (f_1, f_2, \dots, f_T)$
- f_t has a coefficient α_t
- The Hamming distance

$$\Delta(\mathbf{M}(k), \mathbf{F}(\mathbf{x})) = \sum_{t=1}^{T} \alpha_t \frac{1 - \mathbf{M}(k, t) f_t(\mathbf{x})}{2}$$

Multiclass Boosting

- 1: $\mathbf{F} \leftarrow (0, 0, \dots, 0)$, i.e., $f_t \leftarrow 0$
- 2: for t = 1 to T do
- 3: Pick the *t*-th column $\mathbf{M}(\cdot, t) \in \{-, +\}^{K}$
- 4: Train a binary hypothesis f_t on $\{(\mathbf{x}_n, \mathbf{M}(y_n, t))\}_{n=1}^N$
- 5: Decide a coefficient α_t
- 6: end for
- 7: return M, F, and α_t 's

Multiclass Boosting $\circ\circ\bullet\circ\circ\circ\circ\circ$

REPARTITIONING

Experiments 000000 SUMMARY

Multiclass Margin Cost

For an example (\mathbf{x}, y) , we want

 $\Delta (\mathbf{M}(k), \mathbf{F}(\mathbf{x})) > \Delta (\mathbf{M}(y), \mathbf{F}(\mathbf{x})), \qquad \forall k \neq y$

Margin

The margin of the example (\mathbf{x}, y) for class k is

$$\rho_k(\mathbf{x}, y) = \Delta(\mathbf{M}(k), \mathbf{F}(\mathbf{x})) - \Delta(\mathbf{M}(y), \mathbf{F}(\mathbf{x}))$$

EXPONENTIAL MARGIN COST

$$C(\mathbf{F}) = \sum_{n=1}^{N} \sum_{k \neq y_n} e^{-\rho_k(\mathbf{x}_n, y_n)}$$

This is similar to the binary exponential margin cost.

INTRODUCTION 000	Multiclass Boosting	Repartitioning 0000	Experiments 000000	Summary
GRADIENT	Descent ISUN	ET AL 2005]		

A multiclass boosting algorithm can be deduced as gradient descent on the margin cost

Multiclass Boosting

1:
$$\mathbf{F} \leftarrow (0, 0, \dots, 0)$$
, i.e., $f_t \leftarrow 0$

2: **for**
$$t = 1$$
 to *T* **do**

- 3: Pick $\mathbf{M}(\cdot, t)$ and f_t to maximize the negative gradient
- 4: Pick α_t to minimize the cost along the gradient

5: end for

6: return **M**, **F**, and α_t 's

AdaBoost.ECC is a concrete algorithm on the exponential cost.

Multiclass Boosting

REPARTITIONING

EXPERIMENTS 000000 SUMMARY

GRADIENT OF EXPONENTIAL COST

skipped most math equations

Say
$$\mathbf{F} = (f_1, \dots, f_t, 0, \dots).$$

$$-\left.\frac{\partial C\left(\mathbf{F}\right)}{\partial \alpha_{t}}\right|_{\alpha_{t}=\mathbf{0}}=U_{t}\left(1-2\varepsilon_{t}\right)$$

 D
_t(n, k) = e^{-ρ_k(x_n,y_n)} (before f_t is added) How would this example of class y_n be confused as class k?
 U_t = Σ^N_{n=1} Σ^K_{k=1} D
_t(n, k) [[M(k, t) ≠ M(y_n, t)]] Sum of the "confusion" for binary relabeled examples
 D_t(n) = U⁻¹_t · Σ^K_{k=1} D
_t(n, k) [[M(k, t) ≠ M(y_n, t)]] Sum of the "confusion" for individual example
 ε_t = Σ^N_{n=1} D_t(n) [[f_t(x_n) ≠ M(y_n, t)]]

INTRODUCTION 000	Multiclass Boosting	Repartitioning 0000	Experiments 000000	Summary
DIGUING	DADTITIONS			

PICKING PARTITIONS

$$-\left.\frac{\partial C\left(\mathbf{F}\right)}{\partial \alpha_{t}}\right|_{\alpha_{t}=0}=U_{t}\left(1-2\varepsilon_{t}\right)$$

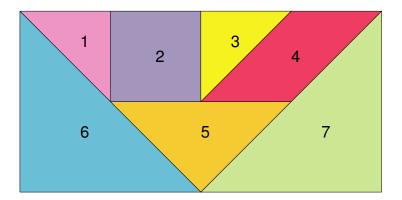
- U_t is determined by the *t*-th column/partition
- ε_t is also decided by the binary learning performance
- Seems that we should pick the partition to maximize U_t and ask the binary learner to minimize ε_t

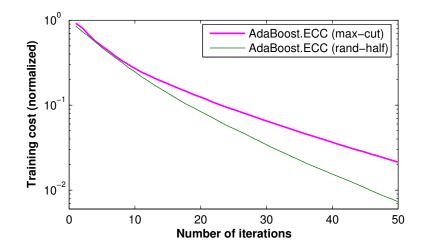
PICKING PARTITIONS

- max-cut: picks the partition with the largest U_t
- rand-half: randomly assigns + to half of the classes

Which one would you pick?

INTRODUCTION	Multiclass Boosting	Repartitioning	Experiments	Summary
000	00000000	0000	000000	
TANGRAM	1			

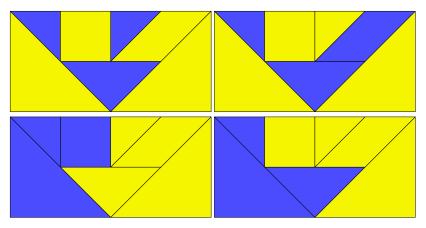




INTRODUCTION MULTICLASS BOOSTING REPARTITIONING EXPERIMENTS SUMMARY 000 0000000 0000 000000

Why was Max-Cut Worse?

- Maximizing U_t brings strong error-correcting ability
- But it also generates much "hard" binary problems



INTRODUCTION	Multiclass Boosting	Repartitioning	Experiments	Summary
000	0000000	0000	000000	
TRADE-0	Off			

$$-\left.\frac{\partial C\left(\mathbf{F}\right)}{\partial \alpha_{t}}\right|_{\alpha_{t}=0}=U_{t}\left(1-2\varepsilon_{t}\right)$$

- Hard problems deteriorate the binary learning, thus overall the negative gradient might be smaller
- Need to find a trade-off between U_t and ε_t
- The "hardness" depends on the binary learner
- So we may "ask" the binary learner for a better partition

INTRODUCTION	Multiclass Boosting	Repartitioning	Experiments	Summary
000	0000000	0000	000000	
Reparti	TIONING			

- Given a binary classifier f_t , which partition is the best?
- The one that maximizes $-\frac{\partial C(\mathbf{F})}{\partial \alpha_t}\Big|_{\alpha_t=0}$

skipped most math equations

 $\mathbf{M}(k, t)$ can be decided from the output of f_t and the "confusion"

Introduction	Multiclass Boosting	Repartitioning	Experiments	Summary
000	00000000	0000	000000	
AdaBoo	ST.ERP			

- Given a partition, a binary classifier can be learned
- Given a binary classifier, a better partition can be generated
- These two steps can be carried out alternatively
- We use a string of "L" and "R" to denote the schedule

EXAMPLE

"LRL" means "Learning \rightarrow Repartitioning \rightarrow Learning"

• We can also start from partial partitions

EXAMPLE

rand-2 starts with two random classes

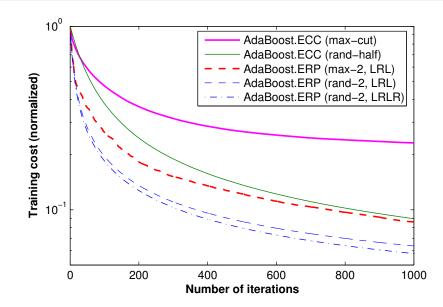
Faster learning; focus on local class structure

Multiclass Boosting

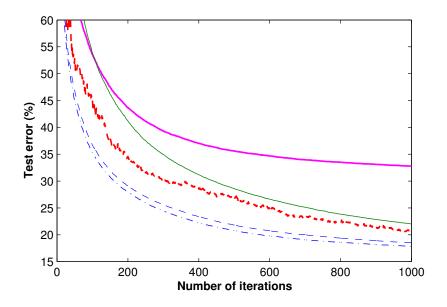
Repartitioning 0000

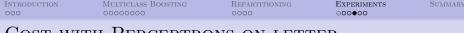
EXPERIMENT SETTINGS

- We compared one-vs-one, one-vs-all, AdaBoost.ECC, and AdaBoost.ERP
- Four different binary learners: decision stumps, perceptrons, binary AdaBoost, and SVM-perceptron
- Ten UCI data sets with number of classes varies from 3 to 26

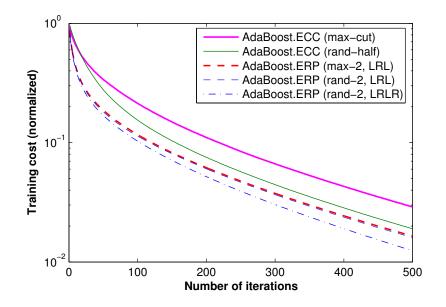


TEST ERROR WITH DECISION STUMPS ON LETTER

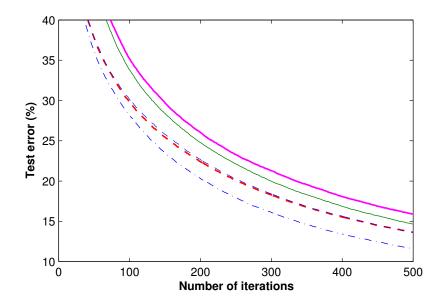




COST WITH PERCEPTRONS ON LETTER



TEST ERROR WITH PERCEPTRONS ON LETTER



INTRODUCTION	Multiclass Boosting	Repartitioning	Experiments	Summary
000	00000000	0000	00000	
Overali	Results			

- AdaBoost.ERP achieved the lowest cost, and the lowest test error on most of the data sets
- The improvement is especially significant for weak binary learners
- With SVM-perceptron, all methods were comparable
- AdaBoost.ERP starting with partial partitions were much faster than AdaBoost.ECC
- One-vs-one is much worse with weak binary learners
- One-vs-one is much faster

Introduction	Multiclass Boosting	Repartitioning	Experiments	Summary
000	00000000	0000	000000	
SUMMARY	ſ			

- A multiclass problem can be reduced to a collection of binary problems via an error-correcting coding matrix
- Multiclass boosting dynamically generates the coding matrix and the binary problems
- Hard binary problems deteriorate the binary learning
- AdaBoost.ERP achieves a better trade-off between the error-correcting and the binary learning