INTRODUCTION	Concepts	Methods	Experiments	Conclusion
000	000	000	000000	0

Improving Generalization by Data Categorization

Ling Li, Amrit Pratap, Hsuan-Tien Lin, and Yaser Abu-Mostafa

Learning Systems Group, Caltech

ECML/PKDD, October 4, 2005

INTRODUCTION	Concepts	Methods	Experiments	Conclusion
•00	000	000	0000000	0
Deres	~			

EXAMPLES IN LEARNING

A LEARNING SYSTEM

$$\mathsf{Jnknown} \; \mathsf{Target} \; f \longrightarrow \mathsf{Examples} \; \{(\mathbf{x}_i, y_i)\}_i \longrightarrow \mathsf{Learner}$$

Examples are essential since they act as the information gateway between the target and the learner.

Not All Examples Are Equally Useful

Surprising examples carry more information

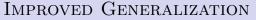
Garbage examples are also surprising (Guyon et al., 1996)

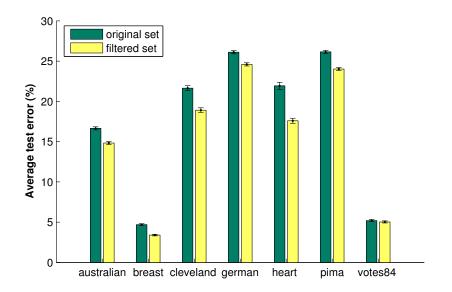
X

Х

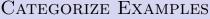
- Noisy examples and outliers
- S Examples beyond the ability of the learner

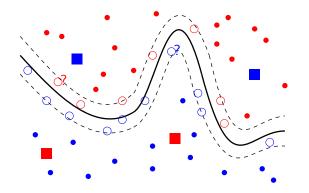
Can we improve learning by automatically categorizing examples?





INTRODUCTION	Concepts	Methods	Experiments	Conclusion
000	000	000	0000000	0
CATECOP	IZE EVAMD	IFS		





- Which examples are "bad"?
- Close-to-boundary examples are informative
- Three categories: typical, critical, and noisy
- The automatic data categorization is for better learning.
- The criteria are usually related with how useful or reliable the example is to learning, such as the margin.

The target $f: \mathcal{X} \to \{-1, 1\}$ comes from thresholding an intrinsic function $f_r: \mathcal{X} \to \mathbb{R}$. That is

$$f(\mathbf{x}) = \operatorname{sign}\left(f_r(\mathbf{x})\right).$$

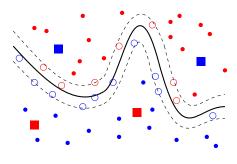
EXAMPLES OF $f_r(\mathbf{x})$

- The credit score of the applicant x minus some threshold
- The signed Euclidean distance of x to the boundary
- The probability of x belonging to class 1 minus 0.5

PROPERTIES

- Problem-dependent (e.g., the knowledge of experts)
- Tells the usefulness or reliability of an example
- Unknown

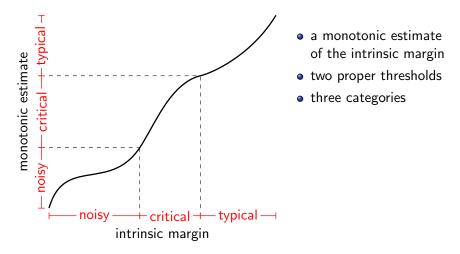
For an example (\mathbf{x}, y) , its intrinsic margin is $yf_r(\mathbf{x})$.



The intrinsic margin $yf_r(\mathbf{x})$ can be treated as a measure of how close \mathbf{x} is to the decision boundary.

- Small positive: near the boundary critical
- Large positive: deep in the class territory typical
- Negative: mislabeled noisy

However, the intrinsic margin is unknown.



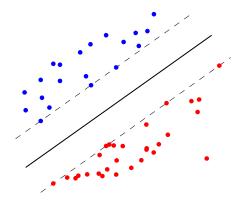
For an example (\mathbf{x}, y) , a hypothesis g may classify it either wrongly or correctly. Consider the expected out-of-sample errors.

$$\mathsf{E}_{g}[\pi(g) \mid \underbrace{g(\mathsf{x}) \neq y}_{\text{wrongly}}] - \mathsf{E}_{g}[\pi(g) \mid \underbrace{g(\mathsf{x}) = y}_{\text{correctly}}]$$

We may select to trust (\mathbf{x}, y) , or not. The difference is the cost we pay when we make the selection. We call it the selection cost.

- We actually estimate a scaled version of the selection cost (Nicholson, 2002).
- The model for learning should be also used for the estimation.

The soft-margin support vector machine (SVM) (Vapnik, 1995) finds a large-confidence hyperplane classifier in the feature space.



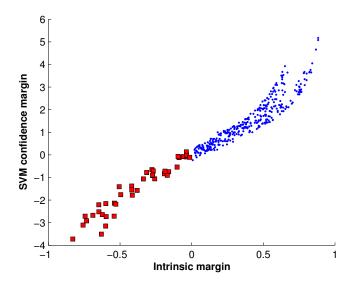
- The confidence margin is a meaningful estimate of the intrinsic margin.
- Better than the one used in (Guyon et al., 1996).
- Confidence margin ≤ 1: support vectors critical
- Negative margin
 noisy

AdaBoost (Freund & Schapire, 1996) is an algorithm to improve the accuracy of a base learner.

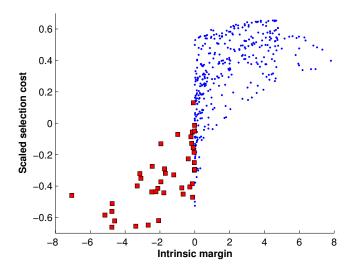
- It iteratively generates an ensemble of base hypotheses.
- It gradually forces the base learner to focus on "hard" examples by giving erroneous examples higher sample weight.

The sample weight is actually a consensus among the base hypotheses on the "hardness" of the example.

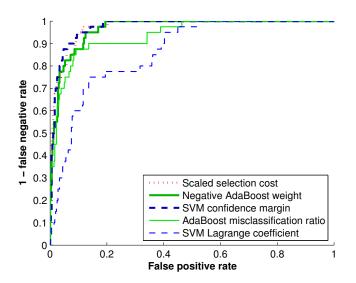
- If an example is too "hard", it is probably noisy.
- If an example is too "easy", it is probably typical.
- The negative average sample weight over different iterations is a robust estimate of the intrinsic margin.

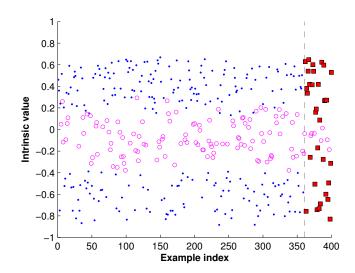


Introduction	Concepts	Methods	Experiments	Conclusion
000	000	000	000000	O
SCATTER F Sin (Merler et				



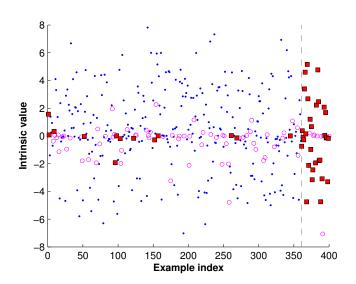
INTRODUCTION	Concepts	Methods	Experiments	Conclusion
000	000	000	000000	0
ROC CUI	RVES			





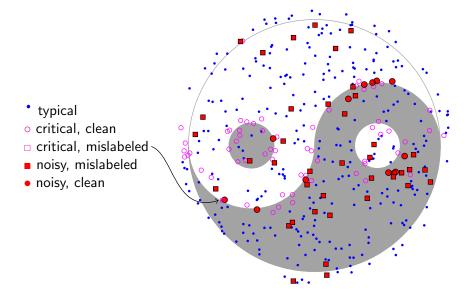
INTRODUCTION	Concepts	Methods	Experiments	Conclusion
000	000	000	000000	0
Fingerph	RINT PLOT			

Sin



Introduction	Concepts	Methods	Experiments	Conclusion
000	000	000	000 00 0	0
2-D Plot				

YIN-YANG (HTTP://WWW.WORK.CALTECH.EDU/LING/DATA/YINYANG.HTML)



INTRODUCTION	Concepts	Methods	Experiments	Conclusion
000	000	000	000000	O
REAL-WOR	rld Data			

UTILIZE DATA CATEGORIZATION

It is now possible to treat different categories differently.

- Noisy examples: remove
- Critical examples: emphasize
- Typical examples: reduce

dataset	orig. dataset	selection cost	SVM margin	AdaBoost weight
australian	16.65 ± 0.19	15.23 ± 0.20	14.83 ± 0.18	13.92 ± 0.16
breast	$\textbf{4.70} \pm \textbf{0.11}$	$\textbf{6.44} \pm \textbf{0.13}$	$\textbf{3.40}\pm\textbf{0.10}$	3.32 ± 0.10
cleveland	21.64 ± 0.31	18.24 ± 0.30	18.91 ± 0.29	18.56 ± 0.30
german	26.11 ± 0.20	30.12 ± 0.15	24.59 ± 0.20	24.68 ± 0.22
heart	21.93 ± 0.43	17.33 ± 0.34	17.59 ± 0.32	18.52 ± 0.37
pima	26.14 ± 0.20	35.16 ± 0.20	24.02 ± 0.19	25.15 ± 0.20
votes84	5.20 ± 0.14	$\textbf{6.45} \pm \textbf{0.17}$	5.03 ± 0.13	4.91 ± 0.13

•

CONTRIBUTIONS

Proposed 3 methods for automatically categorizing examples.

- The methods are from different parts of learning theory.
- They all gave reasonable categorization results.
- ② Tested learning with categorized data.
 - A simple strategy is enough to improve learning.
 - The categorization results can be used in conjunction with a large variety of learning algorithms.

Showed experimentally data categorization is powerful.

FUTURE WORK

- Estimate the optimal thresholds (say, using a validation set)
- Better utilize the categorization in learning
- Extend the framework to problems other than classification