Data Weighting and Selection

p Learning

If an example tends to contradict the hypotheses that the learn-
ing process can produce, 1t can be harmful to learning. Let f be
the target function, e(g(x), f(x)) be the 0/1 loss function, and
n(g) be the out-of-sample error. For a particular example x,
how well e(g(x), f(x)) correlates to 1(g) can be a measure of
how “good” the example 1s. We define

p(x) = corrgle(g(x), f(x)),m(g)]-

In a symmetric learning model,

p(x) o< Eg[m(g)|g(x) # f(x)] — Eg|n(g)[g(x) = f(x)].

Intuitively, examples have a high p value if getting them right
helps to get a smaller 7(g). We want to reweigh examples based
on p, assigning higher weights to the more representative exam-
ples with high p value.

It 1s easy to show that for a data sample of size 1, weighting ex-
amples proportionally to 1 — E,[mt(g)|g(x) = f(x)| provably de-
creases the expected out-of-sample error. Extending the proof
to larger data samples requires that the out-of-sample perfor-
mance of hypotheses that do well on a single example in T 1s
correlated, on average, to the performance of those that do well
on multiple examples in 7.

In practice, f 1s not known. However, 7 can be estimated based
on the leave-one-out error estimate. This estimation seems to
work well 1n the case of noise, and can be used to do data selec-
tion successtully.
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Boosting

Boosting 1s a general framework to improve the accuracy of any
“weak’ learner by iteratively generating a linear combination of
weak hypotheses. It maintains a set of weights over the train-
ing set and emphasizes hard examples by giving them higher
welghts and tavors hypotheses with lower training error by giv-

ing them larger coefficients in the linear combination.

o Given S ={(x;,y;))}’_,. Initialize w! =1/n.

e Forr=11toT:

— Train weak learner with weights w! — h;

— Set o based on the performance of A;

— Set WH‘l oc Wﬁe_atyiht(xi)

e Output sign (3,_; 04/ (x)) as the combined hypothesis.

The sequence of weights w' o Hfl-zl e~ %Yihj(%i) can be used as a
measure of how “hard” it was to get an example right. Examples
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Support Vector Machines

SVM 1s a learning algorithm that finds a linear function with
largest margin to separate data. The problem is generally solved
in Lagrange dual space:
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Via=0,0<a<C
Qij = yiy; {Xi, X))

The SVM decision function is of the form Y o y; (x;,x) + b, so
the Lagrange multiplier o; indicates whether the data x; 1s sepa-
rated correctly or not. That is, the SVM decision function would
give zero weights to “trivially separable” examples, and maxi-
mum weights to “violating” examples. The degree of hardness
of an example can be calculated from its violation of the margin.

that are too hard to get might be outliers or noise. The average
weilght 1s used as a measure of hardness.

Fingerprinting Experiments

We designed a fingerprint experiment to identify characteristics of ex-
amples that relate to learning. We randomly generated training exam-
ples and “flipped” the last 10% of them. Three approaches (p values,
AdaBoost sample weights, and SVM Lagrange values) rooted from dif-
ferent parts of machine learning essentially gave the same results.
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That 1s, examples can be divided into roughly three categories: normal
(blue -), difficult (magenta x), and noisy (red +). Noisy examples are
usually bad and difficult examples are usually boundary cases to learn-
ing. Properly weighting these categories of examples may benefit the
learning process.
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