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We designed a fingerprint experiment to identify characteristics of ex-
amples that relate to learning. We randomly generated training exam-
ples and “flipped” the last 10% of them. Three approaches   (   ρ  values,
AdaBoost sample weights, and SVM Lagrange values) rooted from dif-
ferent parts of machine learning essentially gave the same results.

That is, examples can be divided into roughly three categories: normal
(blu(blu(blueee ···),),), difficult (magenta(magenta ××),), and noisy (re(red +d +).). Noisy examples are
usually bad and difficult examples are usually boundary cases to learn-
ing. Properly weighting these categories of examples may benefit the
learning process.

Fingerprinting Experiments

Generalization error
improvement using ρ
based data selection.
Examples with ρ < ρt
are discarded. ε is the
noise level. [From: A.
Nicholson 02]

If an example tends to contradict the hypotheses that the learn-
ing process can produce, it can be harmful to learning. Let f be
the target function, e(g(x), f (x)) be the 0/1 loss function, and
π(g) be the out-of-sample error. For a particular example x,
how well e(g(x), f (x)) correlates to π(g) can be a measure of
how “good” the example is. We define

ρ(x) = corrg[e(g(x), f (x)),π(g)].

In a symmetric learning model,

ρ(x) Eg[π(g)|g(x) 6= f (x)] Eg[π(g)|g(x) = f (x)].

Intuitively, examples have a high ρ value if getting them right
helps to get a smaller π(g). We want to reweigh examples based
on ρ, assigning higher weights to the more representative exam-
ples with high ρ value.
It is easy to show that for a data sample of size 1, weighting ex-
amples proportionally to 1 Eg[π(g)|g(x) = f (x)] provably de-
creases the expected out-of-sample error. Extending the proof
to larger data samples requires that the out-of-sample perfor-
mance of hypotheses that do well on a single example in T is
correlated, on average, to the performance of those that do well
on multiple examples in T .
In practice, f is not known. However, π can be estimated based
on the leave-one-out error estimate. This estimation seems to
work well in the case of noise, and can be used to do data selec-
tion successfully.

Boosting is a general framework to improve the accuracy of any
“weak” learner by iteratively generating a linear combination of
weak hypotheses. It maintains a set of weights over the train-
ing set and emphasizes hard examples by giving them higher
weights and favors hypotheses with lower training error by giv-
ing them larger coefficients in the linear combination.

Given S = {(xi,yi)}n
i=1. Initialize w1

i = 1/n.

For t = 1 to T :

– Train weak learner with weights wt
i → ht

– Set αt based on the performance of ht

– Set wt+1
i wt

ie
αt yiht(xi)

Output sign ∑T
t=1 αtht(x)

)
as the combined hypothesis.

The sequence of weights wt
i ∏t

j=1 e α jyih j(xi) can be used as a
measure of how “hard” it was to get an example right. Examples
that are too hard to get might be outliers or noise. The average
weight is used as a measure of hardness.

SVM is a learning algorithm that finds a linear function with
largest margin to separate data. The problem is generally solved
in Lagrange dual space:

min
α

1
2

αT Qα+ eT α

yT α = 0,0 α C
Qi j ≡ yiy j xi,x j

〉

The SVM decision function is of the form ∑αiyi 〈xi,x〉+ b, so
the Lagrange multiplier αi indicates whether the data xi is sepa-
rated correctly or not. That is, the SVM decision function would
give zero weights to “trivially separable” examples, and maxi-
mum weights to “violating” examples. The degree of hardness
of an example can be calculated from its violation of the margin.

ρ Value AdaBoost Sample Weight SVM Lagrange Value


