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Abstract. We investigate the role of data complexity in the context of binary classification problems.
The universal data complexity is defined for a data set as the Kolmogorov complexity of the mapping
enforced by the data set. It is closely related to several existing principles used in machine learning such
as Occam’s razor, the minimum description length, and the Bayesian approach. The data complexity
can also be defined based on a learning model, which is more realistic for applications. We demonstrate
the application of the data complexity in two learning problems, data decomposition and data pruning.
In data decomposition, we illustrate that a data set is best approximated by its principal subsets which
are Pareto optimal with respect to the complexity and the set size. In data pruning, we show that
outliers usually have high complexity contributions, and propose methods for estimating the complexity
contribution. Since in practice we have to approximate the ideal data complexity measures, we also
discuss the impact of such approximations.

1 Introduction

Machine learning is about pattern1 extraction. A typical example is an image classifier that auto-
matically tells the existence of some specific object category, say cars, in an image. The classifier
would be constructed based on a training set of labeled image examples. It is relatively easy for
computers to “memorize” all the examples, but in order for the classifier to also be able to correctly
label images that have not been seen so far, meaningful patterns about images in general and the
object category in particular should be learned. The problem is “what kind of patterns should be
extracted?”

Occam’s razor states that entities should not be multiplied beyond necessity. In other words, if
presented with multiple hypotheses that have indifferent predictions on the training set, one should
select the simplest hypothesis. This preference for simpler hypotheses is actually incorporated, ex-
plicitly or implicitly, in many machine learning systems (see for example Quinlan, 1986; Rissanen,
1978; Vapnik, 1999). Blumer et al. (1987) showed theoretically that, under very general assump-
tions, Occam’s razor produces hypotheses that can correctly predict unseen examples with high
probability. Although experimental evidence was found against the utility of Occam’s razor (Webb,
1996), it is still generally believed that the bias towards simpler hypotheses is justified for real-world
problems (Schmidhuber, 1997). Following this line, one should look for patterns that are consistent
with the examples, and simple.

But what exactly does “simple” mean? The Kolmogorov complexity (Li and Vitányi, 1997)
provides a universal measure for the “simplicity” or complexity of patterns. It says that a pattern
is simple if it can be generated by a short program or if it can be compressed, which essentially
means that the pattern has some “regularity” in it. The Kolmogorov complexity is also closely
related to the so-called universal probability distribution (Li and Vitányi, 1997; Solomonoff, 2003),
which is able to approximate any computable distributions. The universal distribution assigns high
probabilities to simple patterns, and thus implicitly prefers simple hypotheses.

While most research efforts integrating Occam’s razor in machine learning systems have been
focused on the simplicity of hypotheses, the other equivalently important part in learning systems,
training sets, has received much less attention in the complexity aspect, probably because training

1 In a very general sense, the word “pattern” here means hypothesis, rule, or structure.
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sets are given instead of learned. However, except for some side information such as hints (Abu-
Mostafa, 1995), the training set is the sole information source about the underlying learning prob-
lem. Analyzing the complexity of the training set, as we will do in this paper, can actually reveal
much useful information about the underlying problem.

This paper is a summary of our initial work on data complexity in machine learning. We focus
on binary classification problems, which are briefly introduced in Section 2. We define the data
complexity of a training set essentially as the Kolmogorov complexity of the mapping relationship
enforced by the set. Any hypothesis that is consistent with the training set would have a program
length larger than or equal to that complexity value. The properties of the data complexity and its
relationship to some related work are discussed in Section 3.

By studying in Section 4 the data complexity of every subset of the training set, one would find
that some subsets are Pareto optimal with respect to the complexity and the size. We call these
subsets the principal subsets. The full training set is best approximated by the principal subsets at
different complexity levels, analogous to the way that a signal is best approximated by the partial
sums of its Fourier series. Examples not included in a principal subset are regarded as outliers
at the corresponding complexity level. Thus if the decomposition of the training set is known, a
learning algorithm with a complexity budget can just train on a proper principal subset to avoid
outliers.

However, locating principal subsets is usually computationally infeasible. Thus in Section 5 we
discuss efficient ways to identify some principal subsets.

Similar to the Kolmogorov complexity, the ideal data complexity measures are either incom-
putable or infeasible for practical applications. Some practical complexity measure that approxi-
mates the ideal ones has to be used. Thus we also discuss the impact of such approximation to our
proposed concepts and methods. For instance, a data pruning strategy based on linear regression
is proposed in Section 5 for better robustness.

Some related work is also briefly reviewed at the end of every section. Conclusion and future
work can be found in Section 6.

2 Learning Systems

In this section, we briefly introduce some concepts and notations in machine learning, especially
for binary classification problems.

We assume that there exists an unknown function f , called the target function or simply the
target, which is a deterministic mapping from the input space X to the output space Y. We focus
on binary classification problems in which Y = {0, 1}. An example or observation (denoted by z) is
in the form of an input-output pair (x, y), where the input x is generated independently from an
unknown probability distribution PX , and the output y is computed via y = f(x). A data set or
training set is a set of examples, and is usually denoted by D = {zn = (xn, yn)}N

n=1 with N = |D|,
the size of D.

A hypothesis is also a mapping from X to Y. For classification problems, we usually define the
out-of-sample error of a hypothesis h as the expected error rate,

π(h) = E
x∼PX

Jh(x) 6= f(x)K,

where the Boolean test J·K is 1 if the condition is true and 0 otherwise. The goal of learning is to
choose a hypothesis that has a low out-of-sample error. The set of all candidate hypotheses (denoted
by H) is called the learning model or hypothesis class, and usually consists of some parameterized
functions.
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Since both the distribution PX and the target function f are unknown, the out-of-sample error
is inaccessible, and the only information we can access is often limited in the training set D. Thus,
instead of looking for a hypothesis h with a low out-of-sample error, a learning algorithm may try
to find an h that minimizes the number of errors on the training set,

eD(h) =
N∑

n=1

Jh(xn) 6= ynK.

A hypothesis is said to replicate or be consistent with the training set if it has zero errors on the
training set.

However, having less errors on the training set by itself cannot guarantee a low out-of-sample
error. For example, a lookup table that simply memorizes all the training examples has no ability
to generalize on unseen inputs. Such an overfitting situation is usually caused by endowing the
learning model with too much complexity or flexibility. Many techniques such as early stopping and
regularization were proposed to avoid overfitting by carefully controlling the hypothesis complexity.

The Bayes rule states that the most probable hypothesis h given the training set D is the one
that has high likelihood Pr {D | h} and prior probability Pr {h},

Pr {h | D} =
Pr {D | h}Pr {h}

Pr {D}
. (1)

Having less errors on the training set makes a high likelihood, but it does not promise a high prior
probability. Regularizing the hypothesis complexity is actually an application of Occam’s razor,
since we believe simple hypotheses should have high prior probabilities.

The problem of finding a generalizing hypothesis becomes harder when the examples contain
noise. Due to various reasons, an example may be contaminated in the input and/or the output.
When considering only binary classification problems, we take a simple view about the noise—we
say an example (x, y) is an outlier or noisy if y = 1 − f(x), no matter whether the actual noise is
in the input or the output.

3 Data Complexity

In this section, we investigate the complexity of a data set in the context of machine learning.
The Kolmogorov complexity and related theories (Li and Vitányi, 1997) are briefly reviewed at the
beginning, with a focus on things most relevant to machine learning. Our complexity measures for a
data set are then defined, and their properties are discussed. Since the ideal complexity measures are
either incomputable or infeasible for practical applications, we also examine practical complexity
measures that approximate the ideal ones. At the end of this section, other efforts in quantifying
the complexity of a data set are briefly reviewed and compared.

3.1 Kolmogorov Complexity and Universal Distribution

Consider a universal Turing machine U with input alphabet {0, 1} and tape alphabet {0, 1, },
where is the blank symbol. A binary string p is a (prefix-free) program for the Turing machine U
if and only if U reads the entire string and halts. For a program p, we use |p| to denote its length
in bits, and U(p) the output of p executed on the Turing machine U . It is possible to have an input
string x on an auxiliary tape. In that case, the output of a program p is denoted as U(p, x).
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Given a universal Turing machine U , the Kolmogorov complexity measures the algorithmic
complexity of an arbitrary binary string s by the length of the shortest program that outputs s

on U . That is, the (prefix) Kolmogorov complexity KU (s) is defined as

KU (s) = min {|p| : U(p) = s} . (2)

KU (s) can be regarded as the length of the shortest description or encoding for the string s on the
Turing machine U . Since universal Turing machines can simulate each other, the choice of U in (2)
would only affect the Kolmogorov complexity by at most a constant that only depends on U . Thus
we can drop the U and denote the Kolmogorov complexity by K(s).

The conditional Kolmogorov complexity K(s | x) is defined as the length of the shortest program
that outputs s given the input string x on the auxiliary tape. That is,

K(s | x) = min {|p| : U(p, x) = s} . (3)

In other words, the conditional Kolmogorov complexity measures how many additional bits of
information are required to generate s given that x is already known. The Kolmogorov complexity
is a special case of the conditional one where x is empty.

For an arbitrary binary string s, there are many programs for a Turing machine U that output s.
If we assume a program p is randomly picked with probability 2−|p|, the probability that a random
program would output s is

PU (s) =
∑

p : U(p)=s

2−|p|. (4)

The sum of PU of all binary strings is clearly bounded by 1 since no program can be the prefix
of another. The U can also be dropped since the choice of U in (4) only affects the probability by
no more than a constant factor independent of the string. This partly justifies why P is named
the universal distribution. The other reason is that the universal distribution P dominates any
computable distributions by up to a multiplicative constant, which makes P the universal prior.

The Kolmogorov complexity and the universal distribution are closely related, since we have
K(s) ≈ − log P (s) and P (s) ≈ 2−K(s). The approximation is within a constant additive or multi-
plicative factor independent of s. This is intuitive since the shortest program for s gives the most
weight in (4).

The Bayes rule for learning (1) can be rewritten as

− log Pr {h | D} = − log Pr {D | h} − log Pr {h} + log Pr {D} . (5)

The most probable hypothesis h given the training set D would minimize − log Pr {h | D}. Let’s
assume for now a hypothesis is also an encoded binary string. With the universal prior in place,
− log Pr {h} is roughly the code length for the hypothesis h, and − log Pr {D | h} is in general the
minimal description length of D given h. This leads to the minimum description length (MDL)
principle (Rissanen, 1978) which is a formalization of Occam’s razor: the best hypothesis for a
given data set is the one that minimizes the sum of the code length of the hypothesis and the code
length of the data set when encoded by the hypothesis.

Both the Kolmogorov complexity and the universal distribution are incomputable.

3.2 Universal Data Complexity

As we have seen, for an arbitrary string, the Kolmogorov complexity K(s) is a universal measure
for the amount of information needed to replicate s, and 2−K(s) is a universal prior probability
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of s. In machine learning, we care about similar perspectives: the amount of information needed to
approximate a target function, and the prior distribution of target functions. Since a training set
is usually the only information source about the target, we are thus interested in the amount of
information needed to replicate a training set, and the prior distribution of training sets. In short,
we want a complexity measure for a training set.

Unlike the Kolmogorov complexity of a string for which the exact replication of the string is
mandatory, one special essence about “replicating” a training set is that the exact values of the
inputs and outputs of examples do not matter. What we really want to replicate is the input-output
relationship enforced by the training set, since this is where the target function is involved. The
unknown input distribution PX might be important for some machine learning problems. However,
given the input part of the training examples, it is also irrelevant to our task.

At first glance the conditional Kolmogorov complexity may seem suitable for measuring the
complexity of replicating a training set. Say for D = {(xn, yn)}N

n=1, we collect the inputs and the
outputs of all the examples, and apply the conditional Kolmogorov complexity to the outputs given
the inputs, i.e.,

K(y1, y2, . . . , yN | x1,x2, . . . ,xN ).

This conditional complexity, as defined in (3), finds the shortest program that takes as a whole
all the inputs and generates as a whole all the outputs. In other words, the shortest program that
maps all the inputs to all the outputs. The target function, if encoded properly as a program, can
serve the mapping with an extra loop to take care of the N inputs, as will any hypotheses that can
replicate the training set.

However, with this measure one has to assume some permutation of the examples. This is not
only undesired but also detrimental in that some “clever” permutations would ruin the purpose of
reflecting the amount of information in approximating the target. Say there are N0 examples that
have 0 as the output. With permutations that put examples having output 0 before those having
output 1, the shortest program would probably just encode the numbers N0 and (N − N0), and
print a string of N0 zeros and (N − N0) ones. The conditional Kolmogorov complexity would be
approximately log N0 + log(N − N0) + O(1), no matter how complicated the target might be.

Taking into consideration that the order of the examples should not play a role in the complexity
measure, we define the data complexity as

Definition 1. Given a fixed universal Turing machine U , the data complexity of a data set D is

CU (D) = min {|p| : ∀ (x, y) ∈ D, U(p,x) = y} .

That is, the data complexity CU (D) is the length of the shortest program that can correctly map
every input in the data set D to its corresponding output.

Similar to the Kolmogorov complexity, the choice of the Turing machine can only affect the
data complexity up to a constant. Formally, we have this invariance theorem.

Theorem 1. For two universal Turing machines U1 and U2, there exists a constant c that only
depends on U1 and U2, such that for any data set D,

|CU1
(D) − CU2

(D)| ≤ c. (6)

Proof. Let 〈U1〉 be the encoding of U1 on U2. Any program p for U1 can be transformed to a
program 〈U1〉 p for U2. Thus CU2

(D) ≤ CU1
(D) + |〈U1〉|. Let 〈U2〉 be the encoding of U2 on U1. By

symmetry, we have CU1
(D) ≤ CU2

(D) + |〈U2〉|. So (6) holds for c = max {|〈U1〉| , |〈U2〉|}. ut
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Thus the data complexity is also universal, and we can drop the U and simply write C(D).
Unfortunately, the data complexity is also not a computable function.

Lemma 1. C(D) ≤ K(D) + c where c is a constant independent of D.

Proof. Let p be the shortest program that outputs D. Consider another program p ′ that takes
an input x, calls p to generate D on an auxiliary tape, searches x within the inputs of examples
on the auxiliary tape, and returns the corresponding output if x is found and 0 otherwise. The
program p′ adds a “shell” with constant length c to the program p, and c is independent of D. Thus
C(D) ≤ |p′| = |p| + c = K(D) + c. ut

Lemma 2. The data complexity C(·) is not upper bounded.

Proof. Consider any target function f : {0, 1}m → {0, 1} that accepts m-bit binary strings as
inputs. A data set including all possible m-bit binary inputs and their outputs from the target f

would fully decide the mapping from {0, 1}m to {0, 1}. Since the Kolmogorov complexity of such
mapping (for all integer m) is not upper bounded (Abu-Mostafa, 1988b,a), neither is C(·). ut

Theorem 2. The data complexity C(·) is incomputable.

Proof. We show this by contradiction. Assume there is a program p to compute C(D) for any data
set D. Consider another program p′ that accepts an integer input l, enumerates over all data sets,
uses p to compute the data complexity for each data set, and stops and returns the first data
set that has complexity at least l. Due to Lemma 2, the program p′ will always halt. Denote the
returned data set as Dl. Since the program p′ together with the input l can generate Dl, we have
K(Dl) ≤ |p′|+K(l). By Lemma 1 and the fact that C(Dl) ≥ l, we obtain l ≤ K(l) + |p′|+ c, where
c is the constant in Lemma 1. This is contradictory for l large enough since we know K(l) is upper
bounded by log l plus some constant. ut

With fixed inputs, a universal prior distribution can be defined on all the possible outputs, just
similar to the universal prior distribution. However, the details will not be discussed in this paper.

3.3 Data Complexity with Learning Models

Using our notions in machine learning, the universal data complexity is the length of the shortest
hypothesis that replicates the data set, given that the learning model is the set of all programs.
However, it is not common that the learning model includes all possible programs. For a limited
set of hypotheses, we can also define the data complexity.

Definition 2. Given a learning model H, the data complexity of a data set D is

CH(D) = min {|h| : h ∈ H and ∀ (x, y) ∈ D, h(x) = y} .

This definition is almost the same as Definition 1, except that program p has now been replaced with
hypothesis h ∈ H. An implicit assumption is that there is a way to measure the “program length”
or complexity of any hypothesis in the learning model. Here we assume an encoding scheme for the
learning model that maps a hypothesis to a prefix-free binary codeword. For example, the encoding
scheme for feed-forward neural networks (Bishop, 1995) can be the concatenation of the number of
network layers, the number of neurons in every layer, and the weights of every neuron, with each
number represented by a self-delimited binary string. We also assume that a program pH, called
the interpreter for the learning model H, can take a codeword and emulate the encoded hypothesis.
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Thus |h|, the complexity of the hypothesis h, is defined as the length of its codeword.2 It is easy to
see that CU (D) ≤ |pH| + CH(D).

The data complexity as Definition 2 is in general not universal, i.e., it depends on the learning
model and the encoding scheme, since full simulation of one learning model by another is not always
possible. Even with the same learning model, two encoding schemes could differ in a way that it is
impossible to bound the difference in the codeword lengths of the same hypothesis.

Definition 2 requires that some hypothesis in the learning model can replicate the data set. This
is probably reasonable if the target is in the learning model and the data set is also noiseless. What
if the target is not in the learning model or there is noise in the data set? A data set might not be
consistent with any of the hypotheses, and thus the data complexity is not defined for it. Actually
in the case of noisy data sets, even if there are hypotheses that are consistent, it is not desirable
to use their complexity as the data complexity. The reason will be clear later in this subsection. In
summary, we need another definition that can take care of replication errors.

Consider a hypothesis h that is consistent with all the examples except (x1, y1). We can construct
a program p by memorizing input x1 with a lookup table entry:

p = if input is x1, then output y1; else run the interpreter pH on h.

Excluding the length of the interpreter, which is common to all hypotheses, the program p is just a
little longer than h, but can perfectly replicate the data set. Actually, the increase of the program
length is the length of the “if . . . then . . . else” structure plus the Kolmogorov complexity of x1

and y1. For a hypothesis that has more than one error, several lookup table entries can be used.3

If we assume the increase in the program length is a constant for every entry, we have

Definition 3. Given a learning model H and a proper positive constant λ, the data complexity
(with a lookup table) of a data set D is

CH,λ(D) = min {|h| + λeD(h) : h ∈ H} .

The constant λ can be seen as the equivalent complexity of implementing one lookup table entry
with the learning model. It can also be regarded as the complexity cost of one error. Definition 2
does not allow any errors, so the data complexity CH(·) is actually CH,∞(·).

For positive and finite λ, the data complexity CH,λ(D) is actually computable. This is because
the complexity is bounded by min {|h| : h ∈ H} + λ |D|, and we can enumerate all codewords that
are not longer than that bound.4

Given a learning model H and an encoding scheme, which determines the hypothesis complexity,
we consider a prior of hypotheses where Pr {h} = 2−|h|. Let’s also assume a Bernoulli noise model
where the probability of an example being noisy is ε. This gives the likelihood as

Pr {D | h} = εeD(h)(1 − ε)N−eD(h) = (1 − ε)N
(
ε−1 − 1

)−eD(h)
.

2 This also includes the possibility of using a universal Turing machine as the interpreter and directly mapping a
hypothesis to a program. In this case, |h| is the program length.

3 There are other general ways to advise that h fails to replicate the example (x1, y1). Here is another one:

p = let y = h(input); if input is in {x1}, then output 1 − y; else output y.

When there are several erroneous examples, {x1} can be replaced with the set of the inputs of the erroneous
examples. If only very basic operations are allowed for constructing p from h, all these ways lead to the same
Definition 3 of the data complexity.

4 Well, we also assume that every hypothesis, simulated by the interpreter, always halts. This is true for any
reasonable learning models.
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And according to (5), we have

− log Pr {h | D} = |h| + eD(h) · log
(
ε−1 − 1

)
+ c,

where c = log Pr {D} − N log(1 − ε) is a constant independent of the hypothesis h. To maximize
the posterior probability Pr {h | D} or to minimize − log Pr {h | D} is equivalent to minimize the
sum of the hypothesis complexity and the error cost for CH,λ(D), with λ = log

(
ε−1 − 1

)
. And the

case of CH(·) or CH,∞(·) corresponds to ε = 0. The Bayesian point of view justifies the use of λ,
and also emphasizes that the encoding scheme should be based on a proper prior of hypotheses.

We also have this straightforward property:

Theorem 3. CH,λ(D) ≤ CH,λ(D ∪D′) ≤ CH,λ(D) + λ |D′|.

The first inequality says that the data complexity is increasing when more examples are added. The
second inequality states that the increase of the complexity is at most λ |D ′|, the cost of treating
all the added examples with lookup table entries. The increase would be less if some of the added
examples can be replicated by the shortest hypothesis for D, or can form patterns which are shorter
than lookup table entries. More will be discussed on these two cases when the complexity-error path
is introduced (Definition 6 on page 19).

For the rest of the paper, we will mostly work with Definition 2 and Definition 3, and we will
use just C(·) for CH,λ(·) or CU (·) when the meaning is clear from the context. Because lookup
table entries are an integrated part of Definition 3, we will also simply use “hypothesis” to mean a
hypothesis together with lookup table entries. Thus all the three data complexity definitions can be
unified as the length of the shortest consistent hypothesis. We use hD to denote one of the shortest
hypotheses that can replicate D.

We will also assume that any mechanisms for memorizing individual examples, no matter
whether it is built-in or implemented as lookup table entries as in Definition 3, would cost the
same complexity as a lookup table. In other words, if an example cannot help build patterns for
other examples, adding it to a set would increase the data complexity by λ.

3.4 Practical Measures

Although we now have three data complexity measures, none of them is feasible in practice. The uni-
versal data complexity CU (·) is incomputable. The data complexity defined on a learning model H,
CH(·), may be computable for some H, but finding a hypothesis that is consistent with the data
set is usually NP-complete, not to mention finding a shortest one. The data complexity with a
lookup table CH,λ(·) seems the most promising to be used in practice. But it also suffers from the
exponential time complexity in searching for a shortest hypothesis (with errors). We need to have
some approximate complexity measure for practical applications.

A reasonable approximation to CH(·) or CH,λ(·) can be obtained as a byproduct of the learning
procedure. A learning algorithm usually minimizes the number of errors plus some regularization
term over the learning model, and the regularization term is usually meant to approximate the
complexity (encoding length) of a hypothesis. Thus some information about the learned hypothesis
can be used as a practical data complexity measure. For example, the number of different literals
used to construct a mixed DNF-CNF rule was used by Gamberger and Lavrač (1997). In the
following text, we will deduce another practical data complexity measure based on the hard-margin
support vector machine.

The hard-margin support vector machine (SVM) (Vapnik, 1999) is a learning algorithm that
finds an optimal hyperplane to separate the training examples with maximal minimum margin. A
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hyperplane is defined as 〈w,x〉 − b = 0, where w is the weight vector and b is the bias. Assuming
the training set is linearly separable, SVM solves the optimization problem below:

min
w,b

‖w‖2 ,

subject to yn (〈w,xn〉 − b) ≥ 1, n = 1, . . . , N. (7)

The dual problem is

min
α

1

2

N∑

i=1

N∑

j=1

αiαjyiyj 〈xi,xj〉 −
N∑

n=1

αn,

subject to αn ≥ 0, n = 1, . . . , N,

N∑

n=1

ynαn = 0.

The optimal weight vector, given the optimal α∗ for the dual problem, is a linear combination of
the training input vectors,

w∗ =
N∑

n=1

ynα∗
nxn. (8)

Note that only the so-called support vectors, for which the equality in (7) is achieved, can have
nonzero coefficients α∗

n in (8).
For a linearly nonseparable training set, the kernel trick (Aizerman et al., 1964) is used to map

input vectors to a high-dimensional space and an optimal separating hyperplane can be found there.
Denote the inner product in the mapped space of two inputs x and x′ as K(x,x′), the so-called
kernel operation. The dual problem with the kernel trick uses the kernel operation instead of the
normal inner product, and the optimal hypothesis (a hyperplane in the mapped space but no longer
a hyperplane in the input space) becomes

N∑

n=1

ynα∗
nK(xn,x) − b∗ = 0.

Since the mapped space is usually high-dimensional or even infinite-dimensional, it is reasonable
to describe the SVM hypothesis by listing the support vectors and their coefficients. Thus the
descriptive length is approximately (Mc1 + c2 + c3), where M is the number of support vectors,
c1 is the average Kolmogorov complexity of describing an input vector and a coefficient, c2 is the
Kolmogorov complexity of the bias, and c3 is the descriptive length of the summation and the
kernel operation. Since c3 is a common part for all SVM hypotheses using the same kernel, and
c2 is relatively small compared to c1, we can use just the number of support vectors, M , as the
complexity measure for SVM hypotheses.

With some minor conditions, SVM with powerful kernels such as the stump kernel and the
perceptron kernel (Lin and Li, 2005a,b) can always perfectly replicate a training set. Thus the
measure based on SVM with such kernels fit well with Definition 2. In the experiments for this
paper, we used the perceptron kernel, which usually has comparable learning performance to the
popular Gaussian kernel, but do not require a parameter selection (Lin and Li, 2005b).

Note that SVM can also be trained incrementally (Cauwenberghs and Poggio, 2001). That
is, if new examples are added after an SVM has already been learned on the training set, the
hyperplane can be updated to accommodate the new examples in an efficient way. Such capability
of incrementally computing the complexity can be quite useful in some applications, such as data
pruning (Subsection 5.2) and deviation detection (Arning et al., 1996).
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3.5 Related Work

Our data complexity definitions share some similarity to the randomness of decision problems.
Abu-Mostafa (1988b,a) discussed decision problems where the input space of the target function
was finite, and defined the randomness of a problem based on the Kolmogorov complexity of the
target’s truth table. The randomness can also be based on the length of the shortest program that
implements the target function, which is essentially equivalent to the previous definition (Abu-
Mostafa, 1988a). However, in our settings, the input space is infinite and the training set includes
only finite examples; hence an entire truth table is infeasible. Thus the second way, which we have
adopted, seems to be the only reasonable definition.

Definition 3, the data complexity with a lookup table, is also similar to the two-part code length
of the minimum description length (MDL) principle (Rissanen, 1978; Grünwald, 2005). The two-
part scheme explains the data via encoding a hypothesis for the data, and then encoding the data
with the help of the hypothesis. The latter part usually takes care of the discrepancy information
between the hypothesis and the data, just like in Definition 3. However, in our definition, the inputs
of the data are not encoded, and we explicitly ignore the order of examples when considering the
discrepancy.

The data complexity is also conceptually aligned with the CLCH value (complexity of the
least complex correct hypothesis) proposed by Gamberger and Lavrač (1997). They required the
complexity measure for hypotheses, which is the program length in this paper, to be “reasonable.”
That is, for two hypotheses, h1 and h2, where h2 is obtained by “conjunctively or disjunctively
adding conditions” to h1, h1 should have no larger complexity than h2. However, this intuitively
correct requirement is actually troublesome. For instance, h1 recognizes all points in a fixed hexagon,
and h2 recognizes all points in a fixed triangle enclosed in that hexagon. Although h2 can be obtained
by adding more constraints on h1, it is actually simpler than h1. Besides, their definition of a set
being “saturated” and the corresponding “saturation test” depend heavily on the training set being
large enough to represent the target function, which might not be practical.

Except the usual complexity measures based on logic clauses, not many practical complexity
measures have been studied. Schmidhuber (1997) implemented a variant of the general universal
search (Levin, 1973) to find a neural network with a close-to-minimal Levin complexity. Although
the implementation is only feasible on very simple toy problems, his experiments still showed that
such search, favoring short hypotheses, led to excellent generalization performance, which reinforced
the validity of Occam’s razor in learning problems.

Wolpert and Macready (1999) proposed a very interesting complexity measure called self-
dissimilarity. They observed that many complex systems tend to exhibit different structural patterns
over different space and time scale. Thus the degrees of self-dissimilarity between the various scales
with which a system is examined constitute a complexity signature of that system. It is mainly a
complexity measure for a system, or a target function in our context, which can provide information
at different scales, and is not straightforward to be applied to a data set.

4 Data Decomposition

In this section, we discuss the issue of approximating a data set with its subsets. Compared with
the full data set, a subset is in general simpler (lower data complexity) but less informative (fewer
examples). In addition, different subsets can form different patterns, and thus lead to different
combinations of the data complexity and the subset size. We show that the principal subsets,
defined later in this section, have the Pareto optimal combinations and best approximate the
full set at different complexity levels. The concept of the principal subsets is also useful for data
pruning (Section 5).
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4.1 Complexity-Error Plots

When there is only one class of examples, the data complexity is a small constant. Only with
examples from both classes can more interesting patterns be formed. Given a training set D,
different subsets of D may form different patterns, and thus lead to different complexity values.

Figure 1(a) shows a toy learning problem with a target consisting of three concentric disks. The

(a) (b) (c) (d)

Figure 1. Subsets of examples from the concentric disks problem: (a) all examples; (b) examples from the two outer
rings; (c) examples within the middle disk; (d) all “×” examples

target is depicted with the “white” and “gray” backgrounds in the plot—examples on the white
background are classified as class 1, and examples on the gray background are classified as 0. The
examples in the plot were randomly generated and are marked with “+” and “×” according to their
class labels. The other three plots in Figure 1 illustrate how different subsets of the examples can
be explained by hypotheses of different complexity levels, and thus may have different complexity
values. We also see that different subsets approximate the full set to different degrees.

For a given data set D, we are interested in all possible combinations of the data complexity
and the approximation accuracy of its subsets. Consider the following set of pairs:

Ω1 = {(C(S), |D| − |S|) : S ⊆ D} . (9)

Here we use |D| − |S| as the approximation error of S.5 The set Ω1 can be regarded as a plot of
points on the 2-D plane. For each subset S, there is a point in Ω1 with the horizontal axis giving
the data complexity and the vertical axis showing the approximation error. Such a plot is called
the subset-based complexity-error plot (see Figure 2).

We can also consider another set built upon programs or hypotheses:

Ω2 = {(|h| , eD(h)) : h ∈ H} .

This set, Ω2, has a point for each hypothesis h in the learning model, depicting the complexity
of the hypothesis and the number of errors on the training set. It is called the hypothesis-based
complexity-error plot. Note that the hypothesis h and the learning model H shall agree with the
data complexity measure C(·) used in (9). For example, if the data complexity measure allows
lookup tables, the learning model H would then includes hypotheses appended with lookup tables
of all sizes.

The two plots in Figure 2 demonstrate for a fictional training set how the two sets of pairs look.
Here are some observations for the two complexity-error plots:

5 If we regard S as a lookup table, the error of the lookup table on the full set is |D| − |S|.
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Figure 2. Fictional complexity-error plots for (left) Ω1 and (right) Ω2

1. For each point in Ω1, there is at least one subset S associated with it. The point associated
with S also shows the complexity of hS .

2. There is a subset Dh associated with each hypothesis h,

Dh = {(x, y) : (x, y) ∈ D and h(x) = y} .

And eD(h) = |D| − |Dh|. Thus the point associated with h also shows the approximation error
of the subset Dh.

3. The leftmost points in both plots are with subsets of only one class, since that gives the lowest
complexity.

4. The points on the horizontal axis are associated with the full set.
5. For any point in Ω1, there is a point in Ω2 that has the same complexity value but a smaller or

equal error value. This is because |DhS
| ≥ |S| when S ⊆ D.

6. For any point in Ω2, there is a point in Ω1 that has the same error value but a smaller or equal
complexity value. This is because C(Dh) ≤ |h|.

4.2 Principal Points and Principal Subsets

The two complexity-error plots depict all the possible combinations of the data complexity and the
approximation error for subsets of the training set. In general, if one subset or hypothesis gets more
examples correct, it would be more complex. However, with the same data complexity, some subsets
may contain more examples than others; and with the same size, some subsets may be simpler than
others. Ideally, to approximate the full set, we want a subset to have the most examples but the
least complexity.

With respect to the data complexity and the approximation error, some points in a complexity-
error plot are optimal in the sense that no other points are better than them. They are called the
principal points:

Definition 4. A point (c, e) in a complexity-error plot is a principal point if and only if we have
for any other point (c′, e′) in the plot, c′ > c or e′ > e.

In other words, a principal point is a Pareto optimal point, since there are no other points that
have one coordinate smaller without making the other coordinate larger.
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Although the subset-based complexity-error plot looks quite different from the hypothesis-based
complexity-error plot, they actually have the same set of principal points.

Theorem 4. The subset-based and hypothesis-based complexity-error plots have the same set of
principal points.

Proof. The proof utilizes the observations in the previous subsection that relates points in these
two plots. For any principal point (c, e) ∈ Ω1, there is a point (c2, e2) ∈ Ω2 with c2 = c and e2 ≤ e.
If (c2, e2) is not a principal point in Ω2, we can find a point (c′2, e

′
2) ∈ Ω2 such that c′2 ≤ c2, e′2 ≤ e2,

and at least one inequality would be strict; otherwise let c′2 = c2 and e′2 = e2. For (c′2, e
′
2), there is

a point (c′, e′) ∈ Ω1 with c′ ≤ c′2 and e′ = e′2. Overall we have c′ ≤ c and e′ ≤ e, and either e2 < e

or (c2, e2) not being a principal point will make at least one inequality be strict, which contradicts
the assumption that (c, e) is a principal point in Ω1. Thus e = e2 and (c, e) is also a principal point
in Ω2. Likewise we can also prove that any principal point of Ω2 is also a principal point in Ω1. ut
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Figure 3. A fictional complexity-error plot with principal points circled

Figure 3 shows the principal points in the subset-based complexity-error plot from the last
fictional problem. Note that each principal point is associated with at least one subset and one
hypothesis. Each principal point represents some optimal trade-off between the data complexity
and the size. To increase the size of the associated subset, we have to go to a higher complexity
level; to reduce the data complexity, we have to remove examples from the subset. Each principal
point also represents some optimal trade-off between the hypothesis complexity and the hypothesis
error. To decrease the error on the training set, a more complex hypothesis should be sought; to
use a simpler hypothesis, more errors would have to be tolerated. Thus the principal point at a
given complexity level gives the optimal error level, and implicitly the optimal subset to learn, and
the optimal hypothesis to pick.

A subset associated with a principal point is called a principal subset. The above arguments
actually say that a principal subset is a best approximation to the full set at some complexity level.
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4.3 Toy Problems

We verify the use of the data complexity in data decomposition with two toy problems. The prac-
tical data complexity measure is the number of support vectors in a hard-margin SVM with the
perceptron kernel (see Subsection 3.4).

The first toy problem is the concentric disks problem with 31 random examples (see page 11).
To have the subset-based complexity-error plot, we need to go over all the (231 − 1) subsets and
compute the data complexity for each subset. To make the job computationally more feasible, we
cluster the examples as depicted in Figure 4 by examples connected with dotted lines, and only
examine subsets that consist of whole clusters.6 The complexity-error plot using these 15 clusters,
with principal points circled, is shown in Figure 5.

Figure 4. 15 clusters of the concentric disks problem, shown as groups of examples connected with dotted lines
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Figure 5. The complexity-error plot based on the clusters of the concentric disks problem (Figure 4), with the
principal points circled

There are 11 principal points associated with 17 principal subsets. In Figure 14 on page 30,
we list all the 17 principal subsets, of which three selected ones are shown in Figure 6. The data

6 The 15 clusters in Figure 4 were manually chosen based on example class and distance, such that each cluster
contains only examples of the same class, and is not too close to examples of the other class. Although this could
be done by some carefully crafted algorithm, we did it manually since the training set is small.
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(a) (0, 11) (b) (17, 3) (c) (24, 0)

Figure 6. Three selected principal subsets of the concentric disks problem (complexity-error pairs are also listed)

Figure 7. 32 clusters of the Yin-Yang problem, shown as groups of examples connected with dotted lines

complexity based on SVM-perceptron and the number of errors are also listed below the subset
plots, and the white and gray background depicts the target function. Plot (a) shows the situation
where a simplest hypothesis predicts the negative class regardless of the actual inputs. The subset
is same as the one in Figure 1(d) on page 11. Plot (c) is the full training set with the highest
data complexity, same as the one in Figure 1(a). The middle one, plot (b) or Figure 1(b), gives an
intermediate situation such that the two classes of examples in the two outer rings are replicated,
but the examples in the inner disk are deserted. This implies that, at that level of complexity,
examples in the inner disk should rather be regarded as outliers than exceptions to the middle disk.

The second toy problem is about the Yin-Yang target function used by Li et al. (2005), which
is also a 2-D binary classification problem. The background colors in Figure 7 depict how the Yin-
Yang target classifies examples within a round plate centered at the origin; examples out of the
plate belong to the Yang (white) class if it is in the upper half-plane. The training set consists
of 100 examples randomly picked within a circle slightly larger than the plate. Clustering is also
required for generating the complexity-error plot. Figure 7 also shows the 32 manually chosen
clusters. The resulted complexity-error plot, based on the practical data complexity measure with
SVM-perceptron, is show in Figure 8.

This time we get 25 principal points and 48 associated principal sets (see Figure 15 on page 31
and Figure 16 on page 32 for most of them). Here in Figure 9, we list and organize with arrows
11 principal sets that we think are representative. With the flow of arrows, the data complexity
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Figure 8. The complexity-error plot based on the clusters of the Yin-Yang problem (Figure 7), with the principal
points circled

increases and the number of errors goes down. The first principal subset shows a simplest hypothesis
classifying any input as the Yang (white) class. The one to the right shows a slightly more complex
hypothesis that seems to separate the two classes by a line. From now on, the classification patterns
fork in slightly different routes. The two subsets in the left route with points (12, 15) and (16, 11)
continue the trend to separate two classes by relatively straight boundaries, only that more examples
are included. Probably due to the specific random sample that we have as the training set, it is
relatively “easier” or “cheaper” to replicate the examples in the small white disk than those in the
small gray disk. This is reflected in both subsets in the left route. On the other hand, the hypotheses
associated with the subsets in the right route, also with points (12, 15) and (16, 11), try to mimic
the main S-shape boundary and ignore all examples in the two small disks. This gets to an extreme
situation with the fourth subset in the right route (point (23, 7)), where all examples except the
seven ones in the two small disks can be correctly replicated. With higher complexity values, the
two routes merge at subsets (points (23, 7) and (29, 4) on the left) that include both examples in
the small white disk but also examples around the S-shape boundary. Finally the examples in the
small gray disk are also included.

4.4 Discussion

The concept of data decomposition is quite similar to approximating a signal function with partial
sums of its Fourier series expansion. Each component in the Fourier series carries information
about the original signal function at some frequency level. And the partial sum gives the best
approximation to the signal function up to some frequency level. Higher precision can be obtained
by adding more series components of higher frequency levels to the partial sum, and in the limit,
the sum becomes the signal function itself.

Following this analogy, we would want to “decompose” the full data set D into a series of
“components,” denoted as δ`, which has information about the full set at different complexity
levels quantified with `. That is,

D =
∞⊎

`=1

δ`,
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(0, 47)

→

(7, 24)

↙ ↓

(12, 15) (12, 15)
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(16, 11) (16, 11)
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(23, 7) (23, 7)

↓ ↙

(29, 4)

→

(35, 3)

→

(41, 0)

Figure 9. Eleven selected principal subsets of the Yin-Yang problem (complexity-error pairs are also listed)
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where
⊎

is some operation to add up the components. Although at this point we are still unclear
exactly what the components δ` are and what the operation

⊎
does, we would expect the partial

sum,

DL =

L⊎

`=1

δ`,

which should be a subset of D, to be the best approximation to D within the complexity level L.

Our analysis about the complexity-error pairs of all the subsets concludes that DL should be
a principal subset. Since a smaller principal subset is not necessarily a subset of a larger principal
subset, the decomposition component δ` is in general not a set of examples. We may consider δ`

as a set of examples that should be added and a set of examples that should be removed at the
complexity level `.7 That is, moving from one principal subset to another generally involves adding
and removing examples.

This fact also leads to the inevitable high computational complexity of locating principal subsets.
It is not straightforward to generate a new principal subset from a known one, and to determine
whether a given subset is principal, exponentially many other subsets needed to be checked and
compared. This issue will be reexamined in Subsection 5.1. There we will see that the computational
complexity is related to the number of the complexity-error paths that contain principal points.

4.5 Related Work

A general consensus is that not all examples in a training set are equivalently important to learning.
For instance, examples contaminated by noise are harmful to learning. Even in cases where all the
examples are noiseless, there are situations in which we want to deal with examples differently.
For instance, in cases where none of the hypotheses can perfectly model the target, it is better to
discard examples that cannot be classified correctly by any hypothesis as they may “confuse” the
learning (Nicholson, 2002; Li et al., 2005).

There have been many different criteria to discriminate examples as different categories: con-
sistent vs. inconsistent (Brodley and Friedl, 1999; Hodge and Austin, 2004), easy vs. hard (Merler
et al., 2004), typical vs. informative (Guyon et al., 1996), etc. Li et al. (2005) unified some of the
criteria with the concept of intrinsic margin and group examples as typical, critical, and noisy.

The approach mentioned in this paper takes a quite different view for categorizing examples.
There are no natively good or bad examples. Examples are different only because they demand
different amount of data complexity for describing them together with other examples. Although
we usually think an example is noisy if it demands too much complexity, the amount can be different
depending on what other examples are also included in the set. Thus an example that seems noisy
at some level of complexity, or with some subset of examples, could be very innocent at another
level of complexity or with another subset of examples.

Hammer et al. (2004) studied Pareto optimal patterns in logical analysis of data. The preferences
on patterns were deliberately picked, which is quite different from our data complexity measures,
so that a Pareto optimal pattern could be found efficiently. Nevertheless, they also favored simpler
patterns or patterns that were consistent with more examples. Their experimental results showed
that Pareto optimal patterns led to superior learning performance.

7 To even further generalize the data decomposition concept, we can formulate both the component δ` and the
partial sum DL as a set of input-belief pairs, where the belief replaces the original binary output and tells how
much we believe what the output should be. However, this more generalized setting is not compatible with our
data complexity measures for binary classification data sets, and will not be discussed in this paper.
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The so-called function decomposition (Zupan et al., 1997, 2001) is a method that learns the
target function in terms of a hierarchy of intermediate hypotheses, which effectively decomposes a
learning problem into smaller and simpler subproblems. Although the idea and approaches are quite
different from data decomposition, it shares a similar motivation for simple hypotheses. The current
methods of function decomposition are usually restricted to problems that have discrete/nominal
input features.

5 Data Pruning

Every example in a training set carries its own piece of information about the target function. How-
ever, if some examples are corrupted with noise, the information they provide may be misleading.
Even in cases where all the examples are noiseless, some examples may form patterns that are too
complex for hypotheses in the learning model, and thus may still be detrimental to learning. The
process of identifying and removing such outliers and too complex examples from the training set
is called data pruning. In this section, we apply the data complexity for data pruning.

We have known that given the decomposition of a training set, it is straightforward to se-
lect a principal subset according to a complexity budget. However, we also know that, even with a
computable practical complexity measure, it is usually prohibitively expensive to find the decompo-
sition. Fortunately, there are ways to approximately identify some principal subsets with affordable
computational requirements.

We first show that, with the ideal data complexity measures, outliers or too complex examples
can be identified efficiently. Then we show that some more robust methods are needed for practical
data complexity measures. Our methods involve a new concept of complexity contribution and
a linear regression model for estimating the complexity contributions. The examples with high
complexity contributions are deemed as noisy for learning.

5.1 Rightmost Segment

If we start from an empty set, and gradually grow the set by adding examples from a full set D,
we observe that the set becomes more and more complex, and reveals more and more details of D,
until finally its data complexity reaches C(D). This leads to the definitions of subset paths and
complexity-error paths:

Definition 5. A subset path of set D is an ordered list of sets (D0,D1, . . . ,DN ) where |Dn| = n

and Dn ⊂ Dn+1 for 0 ≤ n < N , and DN = D.

Definition 6. A complexity-error path of D is a set of pairs {(C(Dn), |D| − |Dn|)} where 0 ≤ n ≤
N and (D0,D1, . . . ,DN ) is a subset path of D.

Along a subset path, the data complexity increases and the approximation error decreases. So the
complexity-error path, if plotted on a 2-D plane, would go down and right, like the one in Figure 10.

Visually, a complexity-error path consists of segments of different slopes. Say from Dn to Dn+1,
the newly added example can already be replicated by hDn

, one of the shortest hypotheses associated
with Dn. This means that no new patterns are necessary to accommodate the newly added example,
and C(Dn+1) is the same as C(Dn). Such a case is depicted as those vertical segments in Figure 10.
If unfortunately that is not the case, a lookup table entry may be appended and the data complexity
goes up by λ. This is shown as the segments of slope −λ−1. It is also possible that some lookup
table entries together can be covered by a pattern with reduced program length, or that the new
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Figure 10. A fictional complexity-error path

example can be accounted for with patterns totally different from those associated with Dn. For
both cases, the data complexity increases by an amount less than λ.

A vertical segment is usually “good”—newly added examples agree with the current hypothesis.
A segment of slope −λ−1 is usually “bad”—newly added examples may be outliers according to
the current subset since they can only be memorized.

The subset-based complexity-error plot can be regarded as the collection of all complexity-error
paths of D. The principal points comprise segments from probably more than one complexity-error
path. Due to the mixing of complexity-error paths, a segment of slope −λ−1 of the principal points
may or may not imply that outliers are added. Fortunately, the rightmost segment, as defined below,
can still help identify outliers.

Definition 7. Given a data set D, the rightmost segment of the principal points consists of all
(c, e) such that (c, e) is a principal point and c + λe = C(D).

In the following text, we will analyze the properties of the rightmost segment, and show how to use
them to identify outliers.

Let’s look at any shortest hypothesis for the training set D, hD. Suppose hD has lookup table
entries for a subset Db of Nb examples, and the rest part of hD can replicate Dg = D\Db, the
subset of D with just those Nb examples removed. Intuitively, examples in Db are outliers since
they are merely memorized, and examples in the pruned set Dg are mostly innocent. The question
is, without knowing the shortest hypothesis hD, “can we find out the examples in Db?”

Note that according to the structure of hD, we have C(Dg) ≤ |hD|−λNb and C(D) = |hD|. Thus
Dg is on the rightmost segment, i.e., C(D) = C(Dg∪Db) = C(Dg)+λNb, and removing Db from D
would reduce the data complexity by λ |Db|. This is due to the Lemma 3 below. Furthermore,
removing any subset D′

b ⊆ Db from D would reduce the data complexity by λ |D ′
b|.

Lemma 3. Assume C(Dg ∪ Db) ≥ C(Dg) + λ |Db|. We have for any D′
b ⊆ Db, C(Dg ∪ D′

b) =
C(Dg) + λ |D′

b|.

Proof. From Theorem 3 on page 8, C(Dg ∪D′
b) ≤ C(Dg) + λ |D′

b|, and

C(Dg ∪ Db) = C(Dg ∪ D′
b ∪ (Db\D

′
b)) ≤ C(Dg ∪ D′

b) + λ
(
|Db| −

∣
∣D′

b

∣
∣
)
.

With the assumption C(Dg ∪ Db) ≥ C(Dg) + λ |Db|, we have C(Dg ∪ D′
b) ≥ C(Dg) + λ |D′

b|. ut
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Geometrically, the lemma says that D\D ′
b would always be on the rightmost segment if D ′

b ⊆ Db.
This also assures that removing any example z ∈ Db from D would reduce the data complexity

by λ. But the inverse is not always true. That is, given an example z such that C(D\{z}) =
C(D) − λ, z might not be in Db. This is because there might be several shortest hypotheses hD

with different lookup table entries and subsets Db. An example in one such Db causes the data
complexity to decrease by λ, but may not be in another Db. With that said, we can still prove that
an example that reduces the data complexity by λ can only be from Db associated with some hD.

Theorem 5. Assume D = Dg ∪ Db, Dg ∩ Db = ∅, the following propositions are equivalent:

1. There is a shortest hypothesis hD for set D that has lookup table entries for examples in Db;
2. C(D) = C(Dg) + λ |Db|;
3. For any subset D′

b ⊆ Db, C(Dg ∪ D′
b) = C(Dg) + λ |D′

b|.

Proof. We have seen 1 ⇒ 2 and 2 ⇒ 3. Here we prove 3 ⇒ 1. Pick any shortest hypothesis hDg

for Dg. For any subset D′
b, add lookup table entries for examples in D ′

b to hDg and we get hDg∪D′

b
,

with
∣
∣hDg∪D′

b

∣
∣ =

∣
∣hDg

∣
∣ + λ |D′

b| = C(Dg ∪ D′
b). Thus hDg∪D′

b
is a shortest hypothesis for Dg ∪ D′

b.
We let D′

b = Db to get the proposition 1. ut

Thus to identify Db, we may try all subsets to see which satisfies proposition 2. Alternatively, we
can also use a greedy method to remove examples from D as long as the reduction of the complexity
is λ.

5.2 Complexity Contribution

From our analysis of the rightmost segment, removing an example from a training set would reduce
the data complexity by some amount, and a large amount of complexity reduction (λ) implies
that the removed example is an outlier. For convenience, define the complexity contribution of an
examples as

Definition 8. Given a data set D and an example z ∈ D, the complexity contribution of z to D is

γD(z) = C(D) − C(D\{z}).

The greedy method introduced in the last subsection just repeatedly removes examples with com-
plexity contribution equal λ.

However, this strategy does not work with practical data complexity measures. Usually, an
approximation of the data complexity is based on a learning model and uses the descriptive length
of a hypothesis learned from the training set. It is usually not minimal even within the learning
model. In addition, the approximation is also noisy in the sense that data sets of similar data
complexity may have quite different approximation values.

For the purpose of a more robust strategy for data pruning, we may look at the complexity
contribution of an example to more than one data set. If most of the contributions are high, the
example is likely to be an outlier; if most of the contributions are close to zero, the example
is probably noiseless. Thus, for instance, we can use the average complexity contribution over
different data sets as an indication of the outliers. In general, we can use a linear regression model
for robustly estimating the complexity contributions.

Assume that for every training example zn there is a real number γ̃n that is the expected
complexity contribution of zn. To be more formal, we assume that, if a subset S of D has zn ∈ S
and s1 < |S| ≤ s2, we have

C(S) − C(S\ {zn}) = γ̃n + ε,
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where 0 ≤ s1 < s2 ≤ N are two size constants, and ε is a random variable with mean 0 representing
the measure noise. In general, if S ′ ⊂ S ⊆ D, s1 ≤ |S ′|, and |S| ≤ s2, we assume

C(S) − C(S ′) =
∑

zn∈S\S′

γ̃n + ε.

With this assumption, we can set up linear equations of γ̃n’s with different pairs of subsets S
and S ′. If we just pick subset pairs in random, we would roughly need two data complexity measur-
ings for each linear equation. To save the number of data complexity measurings, we try to reuse
the subsets for setting up the equations. One way is to construct equations with subset paths, as
detailed below.

Denote s = s2 − s1. For an N -permutation (i1, i2, . . . , iN ), define Sn = {zi1 , zi2 , . . . , zin} for 0 ≤
n ≤ N , which form a subset path (S0,S1, . . . ,SN ). After getting the data complexity values for the
subsets Ss1

until Ss2
, we construct s linear equations for 1 ≤ m ≤ s,

C(Ss1+m) − C(Ss1
) =

s1+m∑

n=s1+1

γ̃in + ε.

Thus we only need (s + 1) data complexity measurings for s linear equations. And if the practical
measure supports incremental measuring, such as the number of support vectors in an SVM (Sub-
section 3.4), we have extra computational savings. With many different N -permutations, we would
have many such equations. Let’s write all the equations in vector form

∆ = Pγ̃ + ε, (10)

where ∆ is a column vector of complexity difference between subsets, P is a matrix and each row
of P is an indication vector of which examples causes the complexity difference, γ̃ is a column
vector [γ̃1, γ̃2, . . . , γ̃N ]T , and ε is also a column vector of corresponding noise. For instance, the
vector form of the s linear equations constructed from the permutation (1, 2, . . . , N) is








C(Ss1+1) − C(Ss1
)

C(Ss1+2) − C(Ss1
)

...
C(Ss2

) − C(Ss1
)








=








s1 columns
︷ ︸︸ ︷

0 . . . 0 1 0 0 . . . 0

(N − s2) columns
︷ ︸︸ ︷

0 . . . 0
0 . . . 0 1 1 0 . . . 0 0 . . . 0

...
0 . . . 0 1 1 1 . . . 1 0 . . . 0















γ̃1

γ̃2
...

γ̃N








+ ε. (11)

For a different permutation, the columns of the indication matrix shuffle according to the permuta-
tion, and the rest is pretty much the same. The actual vector ∆ and matrix P contain many block
matrices from different permutations.

If we further assume some joint distribution of the measure noise ε, we may locate the optimal γ̃n

for these equations. For example, if we assume the noise is normally distributed with Σ = E
[
εε

T
]
as

the covariance matrix, the best linear unbiased estimator for (10) is

γ̃ =
(
PT Σ−1P

)−1
PT Σ−1∆. (12)

Notice that for a specific covariance matrix, the estimate is as simple as the average complexity
contribution:
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Theorem 6. Assume the measure noise is independent across different permutations, and has
covariance matrix

Σ1 =








1 1 · · · 1
1 2 · · · 2
...

...
. . .

...
1 2 · · · s








σ2

within equations of a same permutation. Thus the covariance matrix Σ for all the equations would
be a block diagonal matrix with diagonal blocks being Σ1. The best linear unbiased estimator (12)
is actually

γ̃n = E [C(Si+1) − C(Si) | s1 ≤ |Si| < s2] , (13)

where, for a particular permutation, Si is the largest in the subset path generated by the permutation
that does not include zn, and the expectation is over all the permutations used in constructing the
equations such that Si has the proper size.

Proof. Let’s first focus on equations constructed from a same permutation. Without loss of gener-
ality, we take those in (11) for our proof. Define an s-by-s square matrix

A1 =








1
−1 1

. . .
. . .

−1 1








σ−1.

Left-multiplying both sides of (11) with A1, we get








C(Ss1+1) − C(Ss1
)

C(Ss1+2) − C(Ss1+1)
...

C(Ss2
) − C(Ss2−1)








=








s1 columns
︷ ︸︸ ︷

0 . . . 0 1 0 0 . . . 0

(N − s2) columns
︷ ︸︸ ︷

0 . . . 0
0 . . . 0 0 1 0 . . . 0 0 . . . 0

...
0 . . . 0 0 0 . . . 0 1 0 . . . 0















γ̃1

γ̃2
...

γ̃N








+ A1ε.

It is easily verified that the noise covariance, A1Σ1A
T
1 , is now the identity matrix. The optimal

solution for this permutation only would be γ̃s1+m = C(Ss1+m) − C(Ss1+m−1) for 1 ≤ m ≤ s.
Consider a block diagonal matrix A that has as many diagonal blocks as the permutations, and
each diagonal block is A1. Left-multiplying both sides of (10) with A transforms all the equations
into some form of

C(Si+1) − C(Si) = γ̃n + ε′,

with Si+1 = Si ∪{zn} and the noise covariance matrix being the identity matrix. Thus the optimal
linear solution would be γ̃n equal the average of such complexity contributions. Since our construc-
tion only allows Si to have a size between s1 and s2, we have the estimator (13). ut

Such assumption about the noise covariance matrix is somewhere between a uniform assumption
and a fully-correlated assumption. The uniform assumption regards the noise in each equation as
independent and of the same magnitude. The fully-correlated assumption fine-tunes the model to
assume that, associated with each γ̃n, there is a random noise variable with mean 0 and vari-
ance σ2, and the noise of the equation is the sum of the random noise variables associated with γ̃n’s
in the equation. The noise covariance of two equations would then be proportional to the number
of common γ̃n’s in these two equations. That is, Σ = PPT σ2. However, since usually there are
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more equations than unknown variables, Σ is singular, which gives trouble in solving the equations
via (12). Although the actual noise covariance would depend many factors including the practical
complexity measure, it happens that the assumption that leads to average complexity contribu-
tion (13) works well in practice, as we will see in the next subsection.

5.3 Experiments

We test with the Yin-Yang target the concept of complexity contribution and the methods for
estimating the complexity contribution. The experimental settings are similar to those used by Li
et al. (2005). That is, a data set of size 400 is randomly generated, and the outputs of 40 examples
(the last 10% indices) are further flipped as injected outliers.

We first verify that outliers would have higher complexity contributions on average than noiseless
examples. To do so, we pick a random subset path and compute the complexity increase along the
path. This is repeated many times and the complexity increase is averaged. Figure 11 shows such
average complexity contribution of noisy and noiseless examples versus the subset size. Here are
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Figure 11. Average complexity contribution of the noisy and the noiseless examples in the Yin-Yang data

some observations:

• Overall, the 40 noisy examples have apparently much higher average complexity contribution
than the 360 noiseless ones.

• When the subset size is really small (≤ 6), the noisy and the noiseless examples are indistin-
guishable with respect to complexity contribution. There has to be more information about the
target in order to tell which examples are noisy and which are not.

• The average contribution of the noiseless examples becomes smaller when the subset gets larger.
This is because when the subset has more details about the target function, newly added
noiseless examples would have less chance to increase the data complexity.

• The average contribution of the noisy examples becomes larger when the subset gets larger,
but it also seems converging to some value around 2.5. The reason of the contribution increase
is related to that of the contribution decrease of the noiseless examples. When there is more
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correct information about the target function, an outlier would cause more complexity increase
than it would when there is less information.

• The two contribution curves have noticeable bends at the right ends. These are artifacts due to
the lack of distinct subsets when the subset size is close to the full size.

One way to use the complexity contribution for data pruning is to set a threshold θ and claim any
example zn noisy if γ̃n ≥ θ. For the uniform variance assumption and the assumption leading to the
average complexity contribution, which were discussed in Subsection 5.2, we set s1 = 50, s2 = 400,
and solve equations created from 200,000 random permutations. We plot their receiver operating
characteristic (ROC) in Figure 12. The ROC summarizes how the false negative rate (portion of
noisy examples being claimed as noiseless) changes with the false positive rate (portion of noiseless
examples being claimed as noisy) as the threshold θ varies. Both methods achieve large area under
the ROC curve (AUC), a criterion to compare different ROC curves.
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Figure 12. ROC curves of two estimators on the Yin-Yang data

Similar to the data categorization proposed by Li et al. (2005), we also group all the training
examples into three categories: typical, critical, and noisy. With two ad hoc thresholds θ1 = 2

3
and θ2 = 1, the typical examples are those with γ̃n < θ1, and we hope they are actually noiseless
and far from the class boundary; the noisy examples are those with γ̃n > θ2, and we hope they are
actually outliers; the critical examples are those have γ̃n between θ1 and θ2, and we hope they are
close to the class boundary. Figure 13 is the fingerprint plot which visually shows the categorization.
The examples are positioned according to their signed distance to the decision boundary on the
vertical axis and their index n in the training set on the horizontal axis. Critical and noisy examples
are shown as empty circles and filled squares, respectively. We can see that most of the outliers
(last 10% of the examples) are categorized as noisy, and some examples around the zero distance
value are categorized as critical. We also have some imperfections—some of the critical examples
are categorized as outliers and vice versa.
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Figure 13. Fingerprint plot of the Yin-Yang data with the average contribution: · typical; ◦ critical; � noisy

5.4 Discussion

With the estimated complexity contribution γ̃n, we hope that a noiseless example would have
a relatively low contribution and an outlier would have a relatively high contribution. However,
whether an outlier can be distinguished using the complexity contribution heavily depends on the
choice of the subsets used in the linear equations as well as many other factors.

For instance, the smaller Yin-Yang data set (Figure 7 on page 15) contains several examples
in the small gray disk. It is reflected in the selected principal subsets (Figure 9 on page 17, also
Figure 16 on page 32) that those examples are included in principal subsets of only relatively high
data complexity (≥ 35). Since those examples constitute a small percentage of the training set, a
random subset of size smaller than, say, half of the full training set size, has a small probability to
have most of those examples, and would usually only have patterns shown in principal subsets with
data complexity lower than 35. Thus those examples would have large complexity contributions
with high probability. For similar reasons, if some outliers happen to be in the small gray disk of
the Yin-Yang target, with small subsets they may be regarded as innocent.

It is still unclear what conditions can assure that an outlier would have a high average complexity
contribution.

5.5 Related Work

The complexity contribution quantifies to what degree an example may affect learning with respect
to the data complexity. It is similar to the information gain concept behind informative examples
used by Guyon et al. (1996) for outlier detection.

Some other outlier detection methods also exploit practical data complexity measures. Gam-
berger and Lavrač (1997) used a saturation test which is quite similar to our greedy method. Arning
et al. (1996) looked for the greatest reduction in complexity by removing a subset of examples, which
can be approximately explained by the proposition 2 in Theorem 5.

Statistics community has studied outlier detection extensively (Barnett and Lewis, 1994). They
usually assume an underlying statistical model and define outliers based on discordance tests, many
of which can be described as some simple distance-based check (Knorr and Ng, 1997).
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Learning algorithms can also be used for data pruning. For example, Angelova et al. (2005)
combined many classifiers with naive Bayes learning for identifying troublesome examples. Some
learning algorithms, such as boosting, can produce information about the hardness of an example
as a byproduct, which can be used for outlier detection (Merler et al., 2004; Li et al., 2005).

Angiulli et al. (2004) encoded background knowledge in the form of a first-order logic theory and
outliers were defined as examples for which no logical justification can be found in the theory. They
also showed that such outlier detection was intrinsically intractable due to its high computational
complexity.

6 Conclusion

We have defined three ideal complexity measures for a data set. The universal data complexity
is the length of the shortest program that can replicate the data set. The data complexity for a
learning model finds a consistent hypothesis with the shortest encoding. And the data complexity
with a lookup table also takes hypothesis errors into consideration. All these complexity measures
are closely related to learning principles such as Occam’s razor.

We have demonstrated the usage of the data complexity in two machine learning problems, data
decomposition and data pruning. In data decomposition, we have illustrated that the principal sub-
sets best approximate the full data set; in data pruning, we have proved that outliers are examples
with high complexity contributions. We have also proposed and tested methods for estimating the
complexity contribution.

Underneath the concept and the applications of the data complexity is the desire for general-
ization, the central issue of machine learning. Theoretically, if the correct prior and the exact noise
model are known, we can encode the hypotheses and the errors in a way such that the shortest
hypothesis generalizes the best. If the prior is unknown, the universal prior is a good guess for any
computable priors, and the shortest hypothesis would still have high chance to generalize well. In
practice, we also make a reasonable guess on the prior since practical approximations are usually
designed with Occam’s razor in mind.

Many approaches in this paper require intensive computational efforts, which is inevitable when
the shortest hypothesis is sought. However, for practical applications, more computationally feasible
solutions should be studied.
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A Principal Sets

Here we collect all the principal subsets of the concentric disks problem (Figure 14) and almost
all the principal subsets of the Yin-Yang problem (Figures 15 and 16), which are described in
Subsection 4.3. The corresponding complexity-error plots can be found in Figure 5 on page 14
and Figure 8 on page 16. For the Yin-Yang problem, each of the principal points (11, 16), (15, 12),
and (16, 11) has 4 or more associated principal subsets, but only two are shown for space reason.
The number of support vectors in SVM-perceptron is the practical data complexity measure used.
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(0, 11) (7, 10) (8, 9) (8, 9)

(9, 7) (11, 6) (14, 5) (14, 5)

(14, 5) (14, 5) (15, 4) (17, 3)

(19, 2) (23, 1) (23, 1) (23, 1)

(24, 0)

Figure 14. All principal subsets of the concentric disks problem (complexity-error pairs are also listed)
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(0, 47) (4, 43) (5, 34) (5, 34)

(6, 30) (6, 30) (7, 24) (8, 22)

(9, 20) (10, 17) (11, 16) (11, 16)

(12, 15) (12, 15) (12, 15) (13, 14)

(13, 14) (14, 13) (15, 12) (15, 12)

Figure 15. Principal subsets of the Yin-Yang data, part I
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(16, 11) (16, 11) (17, 10) (19, 9)

(19, 9) (19, 9) (21, 8) (21, 8)

(23, 7) (23, 7) (23, 7) (24, 6)

(28, 5) (28, 5) (29, 4) (35, 3)

(35, 3) (36, 2) (40, 1) (41, 0)

Figure 16. Principal subsets of the Yin-Yang data, part II


