
Perceptron Learning with Random Coordinate Descent

Ling Li

Learning Systems Group, California Institute of Technology

Abstract. A perceptron is a linear threshold classifier that separates examples with a hyperplane. It
is perhaps the simplest learning model that is used standalone. In this paper, we propose a family of
random coordinate descent algorithms for perceptron learning on binary classification problems. Un-
like most perceptron learning algorithms, which require smooth cost functions, our algorithms directly
minimize the training error, and usually achieve the lowest training error compared with other algo-
rithms. The algorithms are also computationally efficient. Such advantages make them favorable for
both standalone use and ensemble learning, on problems that are not linearly separable. Experiments
show that our algorithms work very well with AdaBoost, and achieve the lowest test errors for half of
the data sets.

1 Introduction

The perceptron was first introduced by Rosenblatt (1958) as a probabilistic model for information
processing in the brain. Presented with an input vector x, a perceptron calculates a weighted sum
of x, the inner product of x and its weight vector w. If the sum is above some threshold, the
perceptron outputs 1; otherwise it outputs −1.

Since a perceptron separates examples with a hyperplane in the input space, it is only capa-
ble of learning linearly separable problems.1 For problems with more complex patterns, layers of
perceptrons have to be connected to form an artificial neural network, and the back-propagation
algorithm can be used for learning (Bishop, 1995).

If perfect learning is not required (i.e., nonzero training error is acceptable), the perceptron, as
a standalone learning model, is actually quite useful. For instance, Shavlik et al. (1991) reported
that the perceptron performed quite well under some qualifications, “hardly distinguishable from
the more complicated learning algorithms” such as the feed-forward neural networks. Compared to
another simple linear classifier, the decision stump (Holte, 1993), the perceptron is almost as fast
to compute, but is more powerful in the sense that it can combine different input features.

Given a data set of examples labeled 1 or −1, the task of perceptron learning usually means
finding a hyperplane that separates the examples of different labels with minimal error. When
the data set is separable, the task is relatively easy and many algorithms can find the separating
hyperplane. For example, the perceptron learning rule (Rosenblatt, 1962) is guaranteed to converge
to a separating solution in a finite number of iterations. The support vector machine (SVM) can
even find the optimal separating hyperplane that maximizes the minimal margin, by solving a
quadratic programming problem (Vapnik, 1998).

However, these algorithms behave poorly when the data set is nonseparable, a more common
situation in real-world problems. The perceptron learning rule will not converge, and is very unstable
in the sense that the hyperplane might change from an optimal one to a worst-possible one in
just one trial (Gallant, 1990). The quadratic programming problem of the hard-margin SVM is
unsolvable; even if the soft-margin SVM is used, the solution may be heavily affected by examples
that have the most negative margins, and may not be optimal for training error. It is also arguable
which criterion, the margin or the training error, is more suitable for nonseparable problems.

1 In this paper, phrases “linearly separable” and “separable” are interchangeable, and “nonseparable” means “not
linearly separable.”

Caltech Computer Science Technical Report CaltechCSTR:2005.006, Aug. 2005

http://resolver.caltech.edu/CaltechCSTR:2005.006



2 Ling Li

There are many other perceptron learning algorithms, some of which will be introduced briefly
in the next section. Although those algorithms appear quite different, they usually optimize some
cost functions that are differentiable. The training error, although a very simple cost function, has
never been minimized directly by those algorithms.

In this paper, we introduce a family of new perceptron learning algorithms that directly mini-
mizes the training error. The essential idea is random coordinate descent, i.e., iteratively optimizing
the cost function along randomly picked descent directions. An efficient update procedure is used
to exactly minimize the training error along the picked direction. Both the randomness in the di-
rection picking and the exact minimization of the training error help escape from local minima,
and thus our algorithms usually achieve the best training error compared with other perceptron
learning algorithms.

Although many real-world data sets are simple (Holte, 1993), it is by no means true that a single
perceptron is complex enough for all problems. Sometimes more sophisticated learning models are
required, and they may be constructed based on perceptrons. For example, the kernel trick used
in SVM (Vapnik, 1998) allows the input features to be mapped into some high-dimensional space
and a perceptron to be learned there. Another approach is to aggregate many perceptrons together
to form a voted ensemble. Our algorithms can work with the kernel trick, but this will be the
topic of another paper. In this paper, we explore AdaBoost (Freund & Schapire, 1996) to construct
ensembles of perceptrons. We will show that our algorithms, unlike many other algorithms that are
not good at reducing the training error, work very well with AdaBoost.

The paper is organized as follows: Some of the existing perceptron learning algorithms are
briefly discussed in Section 2. Our random coordinate descent algorithms will be introduced in
Section 3. We throughly compare our algorithms with several other perceptron learning algorithms
in Section 4, either as standalone learners, or working with AdaBoost. We then conclude in Section 5.

2 Related Work

We assume that the input space is a subset of R
m. A perceptron has a weight vector w and a bias

term b (i.e., the negative threshold). For simplicity, we use the notations w = (w0, w1, . . . , wm)
and w0 = b to avoid treating w and b separately. Each input vector x is also a real-valued vector
in R

m+1, with x0 = 1. The perceptron labels the input vector x by computing the inner product
between w and x,

g(x) = sign (〈w,x〉) .

Given a training set {(xi, yi)}
N

i=1 where yi ∈ {−1, 1} is the class label, the perceptron learning
rule proposed by Rosenblatt (1962) updates the perceptron weight vector when a classification error
happens. That is, for an example (x, y), w is updated if g(x) 6= y,

wupdated = w + yx. (1)

This learning rule is applied repeatedly to examples in the training set. If the training set is
linearly separable, the perceptron convergence theorem (Rosenblatt, 1962) guarantees that a zero-
error weight vector can be found in a finite number of update steps. However, if the training set is
nonseparable, the algorithm will never converge and there is no guarantee that the weight vector
obtained after any arbitrary number of steps can generalize well.

The pocket algorithm with ratchet (Gallant, 1990) (Algorithm 1) solves the stability problem
of perceptron learning at the cost of more computational effort. It runs the learning rule (1) while
keeping “in its pocket” an extra weight vector, which is the best-till-now solution. Whenever the
perceptron weight vector is better than the pocket weight vector, the perceptron one replaces the



Perceptron Learning with Random Coordinate Descent 3

Algorithm 1: The pocket algorithm with ratchet (Gallant, 1990) (note that the training error calculation, step 8, may
be skipped when the weight has not changed)

Input: A training set {(xi, yi)}
N

i=1
; Number of epochs T .

1: Initialize w {usually this means setting w← 0}
2: γ ← 0, wp ← w, γp ← 0, ep ← 1
3: for T ×N trials do

4: Randomly pick an example (xk, yk)
5: if yk 〈w,xk〉 > 0 then {w correctly classifies (xk, yk)}
6: γ ← γ + 1
7: if γ > γp then

8: e← 1

N

P

i
[yi 〈w,xi〉 ≤ 0] {the training error of w}

9: if e < ep then

10: wp ← w, ep ← e, γp ← γ

11: end if

12: end if

13: else {w wrongly classifies (xk, yk)}
14: w← w + ykxk {the Rosenblatt’s update rule (1)}
15: γ ← 0
16: end if

17: end for

18: return wp as the perceptron weight vector

Algorithm 2: The averaged-perceptron algorithm (Freund & Schapire, 1999)

Input: A training set {(xi, yi)}; Number of epochs T .
1: t← 1, γt ← 0, initialize wt {usually this means setting wt ← 0}
2: for T epochs do

3: for k = 1 to N do

4: if yk 〈wt,xk〉 > 0 then {wt correctly classifies (xk, yk)}
5: γt ← γt + 1
6: else {wt wrongly classifies (xk, yk)}
7: t← t + 1
8: wt ← wt−1 + ykxk {the Rosenblatt’s update rule (1)}
9: γt ← 1

10: end if

11: end for

12: end for

13: return
Pt

i=1
γiwi as the perceptron weight vector

pocket one. The ratchet check (step 9 in Algorithm 1) ensures that the training error of the pocket
weight vector will only strictly decrease. Although the pocket algorithm can find an optimal weight
vector that minimizes the training error with arbitrarily high probability, in practice, the number
of trials required to produce an optimal weight vector is prohibitively large (Gallant, 1990).

In contrast with the pocket algorithm, which uses only the best weight vector, Freund and
Schapire (1999) suggested combining all the weight vectors that occur in a normal perceptron
learning by a majority vote. Each vector is weighted by its survival time, the number of trials
before the vector is updated. Although this algorithm does not generate a linear classifier, one
variant that uses averaging instead of voting—the averaged-perceptron algorithm (Algorithm 2)—
does produce a linear classifier. Since their experiments showed that the voted- and averaged-
perceptron algorithms had no significant difference in terms of performance, we will only consider
the averaged-perceptron algorithm in this paper.

It is interesting to note that the perceptron learning rule (1) is actually the sequential gradient
descent on a cost function known as the perceptron criterion,



4 Ling Li

C(w) =
1

N

N
∑

i=1

max {0,−yi 〈w,xi〉} . (2)

The pocket algorithm aims at minimizing the training error, but adopts the gradient of the per-
ceptron criterion for weight update, and thus is not efficient. Using the same update rule, the
averaged-perceptron algorithm also tries to minimize the perceptron criterion, but is heavily regu-
larized via averaging.

Besides the perceptron criterion, there are algorithms that adopt other cost functions, such as
the sum-of-squares error (also called the least-squares error), and minimize them by stochastic gra-
dient descent (Zhang, 2004). Most cost functions for binary classification problems can be expressed
as the sample sum of the example margin cost. That is,

C(w) =

N
∑

i=1

ϕic (yi 〈w,xi〉) ,

where ϕi is the sample weight for example (xi, yi), yi 〈w,xi〉 is the unnormalized margin of the
example, and c : R → R

+ is a margin cost function. Several margin cost functions are listed in
Table 1. In order to apply gradient descent, the margin cost has to be differentiable. Thus gradient
descent type algorithms cannot work on the training error cost function, where c (ρ) = [ρ ≤ 0].
Another problem with such approaches is that the optimization process usually sticks at some local
minima, and cannot go close to the optimal solutions.

The minimal (normalized) margin, which is the minimal distance from the examples to the sep-
arating hyperplane, plays an important role in bounding the number of mistakes made by a normal
perceptron learning (Freund & Schapire, 1999). Usually the larger the margin is, the smaller the
bound is, and the better the perceptron generalizes. Thus many algorithms aim at maximizing the
minimal margin. For example, SVM tries to minimize the magnitude of the weight vector ‖w‖ while
keeping the unnormalized margin bounded from below (Vapnik, 1998). The averaged-perceptron
may achieve a better margin distribution through averaging, similar to how AdaBoost improves
the base learner (Schapire et al., 1998).

The relaxed online maximum margin algorithm (ROMMA) is another algorithm that approxi-
mately maximizes the margin (Li & Long, 2002). Each update of ROMMA tries to minimize ‖w‖
according to some relaxed constraints. When the data set is separable, a certain way of running
ROMMA converges to the maximum margin solution. However, there is yet no theoretical analysis
on the behavior of the algorithm when the data set is nonseparable.

It is arguable that the margin is the right criterion to optimize when the data set is nonseparable.
Outliers, which usually have very negative margins, may heavily affect the solution if we insist on
maximizing the minimal margin. The training error, on the contrary, suffers less from outliers since
the error count is the same no matter how negative the margins are.

Table 1: Several cost functions in the form of C(w) =
PN

i=1
ϕic (yi 〈w,xi〉)

cost function c (ρ)

perceptron criterion max {0,−ρ}
SVM hinge loss max {0, 1 − ρ}

least-squares error (1 − ρ)2

modified least-squares (max {0, 1 − ρ})2

0/1 loss training error [ρ ≤ 0]



Perceptron Learning with Random Coordinate Descent 5

3 Random Coordinate Descent

There are two elements in the perceptron learning rule (1) that may be altered for possibly better
learning. The first one is the descent direction, which is yx in (1), and the second is the descent
step, which is always 1 in (1). If we replace them with a vector d and a scalar α, respectively, the
learning rule becomes

wupdated = w + αd. (3)

Different choices on d and α may lead to different perceptron learning rules. In this section, we
propose a family of new algorithms with proper choices of d and α to directly minimize the training
error.

3.1 Finding Optimal Descent Step

We will discuss how to choose the descent directions later in Subsection 3.2. For now, let us assume
that a descent direction d has been picked. We will find the the descent step α to minimize the
training error along the direction d. That is, we need to solve this subproblem:

min
α∈R

e (gw+αd) =
N

∑

i=1

ϕi [yi 〈w + αd,xi〉 ≤ 0] .

Let us first look at how the error on example (x, y) is decided for the weight vector (w + αd).
Denote 〈d,x〉 by δ.

– When δ 6= 0,
〈w + αd,x〉 = 〈w,x〉+ αδ = δ

(

δ−1 〈w,x〉 + α
)

. (4)

Thus
gw+αd (x) = sign (δ) · sign

(

δ−1 〈w,x〉+ α
)

.

This means that the error of gw+αd on example (x, y) is the same as the error of a 1-D linear
threshold function with bias α on the example

(

δ−1 〈w,x〉 , y sign (δ)
)

.
– When δ = 0,

gw+αd (x) = sign (〈w + αd,x〉) = sign (〈w,x〉) .

Thus the descent step α will not change the output on the input x.

The 1-D linear threshold function is actually a decision stump, which has a deterministic and
efficient learning algorithm that minimizes the training error (Holte, 1993). Hence, we can transform
all training examples that have δi 6= 0 with the mapping below,

(xi, yi) 7→
(

δ−1
i
〈w,xi〉 , yi sign (δi)

)

, (5)

and then apply the decision stump learning algorithm to the transformed data set to decide the
optimal descent step α∗.

Since α is not restricted to positive numbers, the direction d is not required to be strictly
descent. As an extreme example, using −d as the search direction in (5) will merely negate the
transformed 1-D examples, and −α∗ will then be returned by the decision stump learning algorithm.

Note that a decision stump can have positive or negative directions. That is, it can be sign (x + α)
or − sign (x + α). Although we expect the learning algorithm to return a decision stump with pos-
itive direction, it is still possible that a negative-direction one will be found.2 When this happens,
the weight vector should be negated; the examples with δi = 0 will also have different errors, and
thus they cannot be ignored as what we just described. The full update procedure is described in
Algorithm 3. The classification error on those examples with δi = 0 is essential in deciding the

2 This usually happens when the initial weight vector has a training error larger than 1

2
.



6 Ling Li

Algorithm 3: The update procedure for random coordinate descent

Input: A training set {(xi, yi)}
N

i=1
and its sample weight {ϕi}

N

i=1
; The current weight w; A descent direction d.

1: for i = 1 to N do {generate the 1-D data set}
2: δi ← 〈d,xi〉
3: if δi 6= 0 then

4: x′
i ← δ−1

i 〈w,xi〉, y′
i ← yi sign (δi)

5: else

6: x′
i ←∞, y′

i ← yi sign (〈w,xi〉) {set sign(0) = −1 only here}
7: end if

8: end for

9: Find the optimal decision stump for {(x′
i, y

′
i)}

N

i=1
and {ϕi}

N

i=1
,

(q∗, α∗) = arg min
q∈{−1,+1},α∈R

X

i

ϕi

ˆ

y
′
i · q · sign

`

x
′
i + α

´

≤ 0
˜

10: w← w + α∗d

11: if q∗ = −1 then

12: w← −w

13: end if

Algorithm 4: The update procedure for random coordinate descent using a positive-direction decision stump

Input: A training set {(xi, yi)}
N

i=1
and its sample weight {ϕi}

N

i=1
; The current weight w; A search direction d.

1: for i = 1 to N do {generate the 1-D data set}
2: δi ← 〈d,xi〉
3: if δi 6= 0 then

4: x′
i ← δ−1

i 〈w,xi〉, y′
i ← yi sign (δi)

5: end if

6: end for

7: Find the optimal decision stump for {(x′
i, y

′
i)} and {ϕi}, only considering those with δi 6= 0,

α
∗ = arg min

α∈R

X

i : δi 6=0

ϕi

ˆ

y
′
i · sign

`

x
′
i + α

´

≤ 0
˜

8: w← w + α∗d

optimal direction, acting as an error bias for the positive direction.

We also use a simplified procedure (Algorithm 4), considering only positive-direction decision
stumps. Since the emergence of negative-direction decision stumps is really rare and usually happens
at the beginning of the optimization, we choose the simplified one for our experiments.

The computational complexity of both the update procedures is O [mN + N log N ]. The map-
ping (5) takes N inner product operations, which has complexity O [mN ]. The decision stump
learning requires to sort the transformed 1-D data set, and the complexity is O [N log N ]. Looking
for the optimal bias is just an operation linear in N . Compared with the standard perceptron learn-
ing whose complexity is O [mN ] for every epoch (to examine the inner product with N examples),
our update procedure is still very efficient, especially when the number of examples is comparable
to 2m.

3.2 Choosing Descent Directions

There are many ways to choose the descent directions.

Even if the cost function we are minimizing is the 0/1 loss training error, we can still adopt the
gradient of the perceptron criterion as the descent direction. Actually, we may use the gradient of
any reasonable smooth cost function as our descent direction.



Perceptron Learning with Random Coordinate Descent 7

Algorithm 5: Random coordinate descent algorithm for perceptrons

Input: A training set {(xi, yi)}
N

i=1
and its sample weight {ϕi}

N

i=1
; Number of epochs T .

1: Initialize w

2: for T epochs do

3: Generate a random vector d ∈ R
m+1 as the descent coordinate

4: Do the weight update procedure with {(xi, yi)}
N

i=1
, {ϕi}

N

i=1
, w, and d

5: end for

6: return w as the perceptron weight

The cyclic coordinate descent (CCD), also known as the iterative coordinate descent, can be
used when the cost function is not differentiable. It picks one coordinate at a time and changes the
value of that coordinate in the weight vector. In other words, if we denote the i-th basis vector
by ei, e.g., e0 = (1, 0, . . . , 0)T , CCD uses ei as the descent direction.

However, except for the possible actual meanings that the original coordinates may have, there is
nothing special about the original coordinate system—we can set up another coordinate system and
do CCD there. That is, we can pick a random basis, which is a set of pairwise orthogonal vectors,
and iteratively use each basis vector as the descent direction. In order to avoid local minima caused
by a fixed coordinate system, a different random basis shall be put in use every once in a while.
Another more radical and more generalized choice is to every time pick a new random vector as the
descent vector, as summarized in Algorithm 5, the random coordinate descent (RCD) algorithm.

We have investigated two general ways of picking random vectors. The first one, which we refer
to as the uniform random vectors, picks each component of the vector from a uniform distribution
spanned over the corresponding feature range. If the input features of the examples have been
normalized to [−1, 1] (see Section 4 for more details), each component is a random number uniformly
in [−1, 1]. The other one uses Gaussian distribution instead of the uniform distribution, and is
named Gaussian random vectors. If the features have been normalized to have zero mean and unit
variance, each component is then picked from a unit Gaussian distribution. This approach has the
nice property that the angle of the random vectors is uniformly distributed.

3.3 Variants of RCD

We can get different variants of RCD by using different schedules of random descent directions. For
example, if ei (i = 0, . . . ,m) is iteratively picked as the descent direction, we get CCD.

When a random basis of (m + 1) pairwise orthogonal vectors is used for every (m + 1) epochs,
we refer to it as RCD-conj. RCD-grad is RCD with the gradient of the perceptron criterion.

One thing we have noticed is that the range of the bias, w0, can be quite different from those
of the other components of w. Thus it might be necessary to have a descent direction devoted to
adjusting w0 only. If the vector e0 is adopted every (m + 1) epochs in addition to other settings,
RCD becomes RCD-bias, and RCD-conj becomes RCD-conj-bias.

4 Experiments

We compare our RCD algorithms with several existing perceptron learning algorithms, as both
standalone learners and base learners for AdaBoost. Experiments are carried out on nine real-world
data sets3 from the UCI machine learning repository (Hettich et al., 1998), and three artificial data

3 They are australian (Statlog: Australian Credit Approval), breast (Wisconsin Breast Cancer), cleveland (Heart
Disease), german (Statlog: German Credit), heart (Statlog: Heart Disease), ionosphere (Johns Hopkins University
Ionosphere), pima (Pima Indians Diabetes), sonar (Sonar, Mines vs. Rocks), and votes84 (Congressional Voting
Records), with incomplete records removed.



8 Ling Li

sets4. Each real-world data set is randomly shuffled and split with 80% of the data for training
and the rest for testing. Each artificial data set has 5000 randomly generated examples, of which
600 are used for training. The perceptron algorithms are allowed to run T = 2000 epochs. This is
repeated 500 times to get the mean and the standard error of the training and test errors.

Data Preprocessing. Solely based on the feature distribution in the training set, we shift and scale
the features in the training set to [−1, 1], and correspondingly normalize the test set.5 Thus we use
the uniform random vectors for RCD algorithms.

Initial Seeding. We initialize the perceptron weight vector with two possible vectors, the zero vector
and the Fisher’s linear discriminant (FLD, see for example (Bishop, 1995)). For the latter case, when
the within-class covariance matrix estimate happens to be singular, we regularize it with a small
eigenvalue shrinkage parameter of the value 10−10, just large enough to permit numerically stable
inversion (Friedman, 1999).

4.1 Comparing Variants of RCD

We first look at the in-sample performance of our RCD algorithms. Figure 1 shows, for the pima

data set,6 the training errors for several RCD algorithms. We can see that

10
0

10
1

10
2

10
3

20

22

24

26

28

30

32

34

36

Number of epochs

T
ra

in
in

g
 e

rr
o

r 
(%

)

CCD
RCD−grad
RCD
FLD, CCD
FLD, RCD−grad
FLD, RCD

10
0

10
1

10
2

10
3

19.5

20

20.5

21

21.5

22

Number of epochs

T
ra

in
in

g
 e

rr
o

r 
(%

)

FLD, RCD
FLD, RCD−conj
FLD, RCD−bias
FLD, RCD−conj−bias

Figure 1: Training errors of several RCD algorithms on the pima data set

– With FLD as a much better initial weight vector, the RCD algorithms achieve final training
errors significantly lower than those obtained from the zero starting vector.

– RCD-grad does not work as well as other RCD algorithms. Apparently this is because the
descent direction it uses is the gradient of the perceptron criterion, but the optimization is for
the training error.

4 They are ringnorm and threenorm (Breiman, 1996; Breiman, 1998), and yinyang (Li et al., 2005, Yin-Yang).
5 Note that a common practice is to normalize based on all the examples, with the benefit of doing it only once

before the data splitting. However, since our RCD algorithms are affected by the range of the random descent
directions, even this “tiny” peek into the test set will give our algorithms an unfair edge.

6 Most plots in this paper are based on results on the pima data set. However, there is nothing special about pima.
It is just a data set picked for illustration purposes.



Perceptron Learning with Random Coordinate Descent 9

– Randomness in the direction picking is important. Even without FLD, RCD surpasses CCD with
FLD in the end.

– Whether to use groups of orthogonal directions seems not affecting the performance significantly.
– The bias direction e0 does yield a better optimization, especially at the beginning. However,

the edge gets smaller with more training epochs.

Thus for clearer comparison with other perceptron learning algorithms, we shall focus on RCD

and RCD-bias.

4.2 Comparing with Other Algorithms

We compare our RCD algorithms with several other perceptron algorithms, including the pocket al-
gorithm with ratchet (pocket) (Gallant, 1990), averaged-perceptron (ave-perc) (Freund & Schapire,
1999), stochastic gradient descent with a learning rate 0.002 on the SVM hinge loss (SGD-hinge)
and that on the modified least-squares (SGD-mls) (Zhang, 2004), and the soft-margin SVM with
the linear kernel and parameter selection (soft-SVM) (Chang & Lin, 2001; Hsu et al., 2003).

It should be mentioned that when Freund and Schapire (1999) proposed the voted-perceptron
and averaged-perceptron algorithms, they did not pay much attention to how the examples should
be presented in multi-epoch runs, since their theoretical result on the error bound is only applicable
to one-epoch run of the voted-perceptron. We find that cycling through examples with a fixed order7

is not optimal for multi-epoch runs of the averaged-perceptron. Randomly permuting the training
set at the beginning of each epoch or simply choosing examples at random at each trial can improve
both the in-sample and the out-of-sample performance (see Figure 2 for a comparison on the pima

data set). In our experiments, we use averaged-perceptron with the random sampling (see line 3 of
Algorithm 6). Figure 2 also shows that using FLD only helps for early epochs.

10
0

10
1

10
2

10
3

21.5

22

22.5

23

23.5

24

Number of epochs

T
ra

in
in

g
 e

rr
o

r 
(%

)

ave−perc, fixed
ave−perc, permute
ave−perc, random
FLD, ave−perc, random

10
0

10
1

10
2

10
3

21.5

22

22.5

23

23.5

24

Number of epochs

T
es

t 
er

ro
r 

(%
)

ave−perc, fixed
ave−perc, permute
ave−perc, random
FLD, ave−perc, random

Figure 2: Training and test errors of the averaged-perceptron algorithm on the pima data set

ROMMA and aggressive ROMMA (Li & Long, 2002) perform miserably on most of the data sets
we tried. The solution oscillates, especially when random sampling is used, and the training and test

7 This is what was implied in (Freund & Schapire, 1999; Li & Long, 2002) although they did preprocess the training
examples with a random permutation.



10 Ling Li

10
0

10
1

10
2

10
3

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

Number of epochs

T
ra

in
in

g
 e

rr
o

r 
(%

)
FLD, RCD−bias
FLD, pocket
FLD, ave−perc
FLD, SGD−hinge
FLD, SGD−mls

10
0

10
1

10
2

10
3

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

Number of epochs

T
es

t 
er

ro
r 

(%
)

FLD, RCD−bias
FLD, pocket
FLD, ave−perc
FLD, SGD−hinge
FLD, SGD−mls

Figure 3: Training and test errors of several perceptron learning algorithms on the pima data set

errors keep high. They also have numerical problems when running for more than several hundreds
of epochs, even with the normalized data. We thus exclude them from further comparisons.

Figure 3 presents the performance of the selected algorithms on the pima data set.8 In the
competition for low training errors, RCD-bias is clearly the best, and pocket follows. However, when
the test error is concerned, the other three methods, especially ave-perc, are the winners. Tables 2
and 3 give the training and test errors on all the data sets at the end of the 2000 epochs. The
errors of soft-SVM are also included. Again, we observe that RCD and RCD-bias achieve the lowest
training errors for most data sets, but only achieve the lowest test errors for two artificial data sets,
ringnorm and yinyang. The soft-SVM and ave-perc, both heavily regularized, overall achieve much
better test errors. Since most real-world data sets may be noisy or contain errors, overfitting might
be the reason for the inferior out-of-sample performance of the RCD algorithms.

The two artificial data sets, ringnorm and yinyang, have quite different nature. The former is 20-
dimensional and inherently noisy, and the latter is 2-dimensional and has clean boundaries. However,
overfitting seems to be no problems for these two data sets. Figure 4 shows that, approximately,
the lower the training error, the lower the test error. We are still unclear for what problems the
perceptron model will induce no or very little overfitting.

We should also note that pocket is much slower than other algorithms such as ave-perc and RCD.
This is because every time a new weight vector is considered for the “pocket,” mN multiplications
have to be done for computing the training error. Thus pocket may actually go over all the examples
many times in one epoch, especially when the initial weight has good quality. For example, for the
pima data set, the average number of training error computations is 7463.7 for 2000 epochs if
initialized with the zero vector, and 33170.0 if initialized with FLD.

4.3 Ensembles of Perceptrons

AdaBoost (Freund & Schapire, 1996) is probably the most popular algorithm among the boosting
family that generates a linear combination of base hypotheses. It improves the accuracy of the
base learner by gradually focusing on “hard” examples. At each iteration, AdaBoost gives the base

8 We did not show the curves for RCD because they are very close to those of RCD-bias.



Perceptron Learning with Random Coordinate Descent 11

Table 2: Training errors (%) of several perceptron learning algorithms initialized with FLD

data set RCD RCD-bias pocket ave-perc SGD-hinge SGD-mls soft-SVM

australian 10.12 ± 0.03 9.98 ± 0.03 10.81 ± 0.03 12.19 ± 0.03 14.11 ± 0.03 12.70 ± 0.04 14.33 ± 0.03
breast 1.68 ± 0.01 1.68 ± 0.01 1.86 ± 0.01 2.87 ± 0.02 2.66 ± 0.02 2.77 ± 0.02 2.70 ± 0.02
cleveland 10.57 ± 0.05 10.62 ± 0.05 12.07 ± 0.05 14.40 ± 0.06 14.31 ± 0.06 14.48 ± 0.06 14.74 ± 0.05
german 19.16 ± 0.04 18.80 ± 0.03 21.10 ± 0.03 21.31 ± 0.04 21.54 ± 0.04 22.18 ± 0.05 21.48 ± 0.04
heart 9.48 ± 0.05 9.49 ± 0.05 11.22 ± 0.05 13.64 ± 0.06 13.73 ± 0.06 13.82 ± 0.06 14.20 ± 0.06
ionosphere 3.88 ± 0.04 3.97 ± 0.04 3.41 ± 0.05 4.92 ± 0.06 4.55 ± 0.04 5.14 ± 0.05 6.95 ± 0.10
pima 19.60 ± 0.04 19.60 ± 0.03 20.34 ± 0.03 21.99 ± 0.04 22.15 ± 0.04 22.25 ± 0.04 22.09 ± 0.04
ringnorm 27.61 ± 0.07 27.36 ± 0.08 30.46 ± 0.07 35.49 ± 0.11 31.92 ± 0.09 34.52 ± 0.13 31.82 ± 0.09
sonar 2.56 ± 0.04 2.62 ± 0.04 0.00 ± 0.00 0.37 ± 0.02 2.23 ± 0.05 1.42 ± 0.06 11.58 ± 0.20
threenorm 11.41 ± 0.06 11.39 ± 0.06 13.53 ± 0.06 14.43 ± 0.06 14.23 ± 0.06 14.51 ± 0.06 14.47 ± 0.06
votes84 1.32 ± 0.02 1.31 ± 0.02 1.46 ± 0.02 2.42 ± 0.03 1.84 ± 0.03 2.48 ± 0.03 3.02 ± 0.04
yinyang 15.33 ± 0.05 15.36 ± 0.05 15.61 ± 0.05 19.10 ± 0.07 18.89 ± 0.08 19.03 ± 0.07 18.89 ± 0.08

(results within one standard error of the best are marked in bold)

Table 3: Test errors (%) of several perceptron learning algorithms initialized with FLD

data set RCD RCD-bias pocket ave-perc SGD-hinge SGD-mls soft-SVM

australian 14.24 ± 0.12 13.92 ± 0.12 14.31 ± 0.12 13.64 ± 0.12 14.72 ± 0.12 13.87 ± 0.12 14.78 ± 0.12
breast 3.65 ± 0.07 3.61 ± 0.07 3.43 ± 0.06 3.36 ± 0.06 3.34 ± 0.06 3.28 ± 0.06 3.22 ± 0.06

cleveland 18.68 ± 0.22 18.57 ± 0.21 18.49 ± 0.21 16.74 ± 0.20 17.24 ± 0.20 16.76 ± 0.20 16.72 ± 0.20

german 24.45 ± 0.12 23.70 ± 0.13 25.24 ± 0.13 23.24 ± 0.12 23.66 ± 0.13 24.05 ± 0.13 23.64 ± 0.12
heart 18.13 ± 0.21 18.20 ± 0.22 17.63 ± 0.20 16.51 ± 0.20 16.70 ± 0.20 16.49 ± 0.20 16.45 ± 0.20

ionosphere 13.91 ± 0.17 14.72 ± 0.18 12.87 ± 0.18 12.76 ± 0.18 12.45 ± 0.17 12.63 ± 0.18 12.57 ± 0.17

pima 23.79 ± 0.14 23.50 ± 0.14 23.50 ± 0.14 22.79 ± 0.14 23.13 ± 0.13 23.07 ± 0.14 23.19 ± 0.14
ringnorm 35.83 ± 0.04 35.65 ± 0.04 36.59 ± 0.04 39.27 ± 0.08 36.01 ± 0.05 38.38 ± 0.10 35.70 ± 0.05
sonar 25.98 ± 0.29 26.20 ± 0.29 25.20 ± 0.25 25.09 ± 0.26 24.72 ± 0.28 24.90 ± 0.28 23.89 ± 0.27

threenorm 16.82 ± 0.03 16.86 ± 0.03 17.65 ± 0.04 16.14 ± 0.02 16.33 ± 0.02 16.18 ± 0.02 16.08 ± 0.02

votes84 5.21 ± 0.09 5.00 ± 0.10 5.24 ± 0.10 4.52 ± 0.10 5.17 ± 0.09 4.70 ± 0.11 4.39 ± 0.09

yinyang 17.71 ± 0.02 17.75 ± 0.02 17.74 ± 0.02 19.25 ± 0.02 19.12 ± 0.02 19.21 ± 0.02 19.21 ± 0.02

(results within one standard error of the best are marked in bold)

10
0

10
1

10
2

10
3

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

Number of epochs

T
ra

in
in

g
 e

rr
o

r 
(%

)

10
0

10
1

10
2

10
3

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

Number of epochs

T
es

t 
er

ro
r 

(%
)

FLD, RCD−bias
FLD, pocket
FLD, ave−perc
FLD, SGD−hinge
FLD, SGD−mls

Figure 4: Training and test errors of several perceptron learning algorithms on the yinyang data set



12 Ling Li

Algorithm 6: The randomized averaged-perceptron algorithm with reweighting

Input: A training set {(xi, yi)}
N

i=1
and its sample weight {ϕi}

N

i=1
; Number of epochs T .

1: t← 1, γt ← 0, initialize wt

2: for T ×N trials do

3: Randomly pick an example (xk, yk) with uniform probability
4: if yk 〈wt, xk〉 > 0 then {wt correctly classifies (xk, yk)}
5: γt ← γt + Nϕk

6: else {wt wrongly classifies (xk, yk)}
7: t← t + 1
8: wt ← wt−1 + Nϕkykxk {using the sample weight}
9: γt ← Nϕk

10: end if

11: end for

12: return w =
Pt

i=1
γiwi

learner a set of sample weights, and asks for a hypothesis that has a low weighted training error.
Thus in order to work with AdaBoost, a base learner should be able to take care of weighted data.

Our RCD algorithms are ideal for working with AdaBoost, since they are designed to directly
minimize the weighted training error. For the other algorithms, small modifications are needed to
accommodate weighted data.

Take pocket for example. Given a set of sample weights {ϕi}
N

i=1, we may modify line 4 of Al-
gorithm 1 to “randomly pick an example (xk, yk) according to the distribution defined by {ϕi},”
and replace line 8 with the weighted training error

∑

i
ϕi [yi 〈w,xi〉 ≤ 0]. We refer to this as resam-

pling. Alternatively, we can keep picking examples with uniform probability, but modify quantities
related to sample weights in a proper way. Here we change line 6 to “γ ← γ + Nϕk” and line 14 to
“w ← w + Nϕkykxk.” Of course we also modify line 8 as before. We refer to this as reweighting.
The modified ave-perc with reweighting is shown in Algorithm 6. Note that the names reweighting
and resampling have slightly different meanings from those by Freund and Schapire (1996).

Our experiments with AdaBoost (see Subsection 4.4 for settings) show that there is no significant
difference between the resampling and reweighting methods. Since resampling usually requires
O [log N ] time to generate a random index according to the sample distribution, we prefer the
reweighting method for its low computational overhead.

4.4 AdaBoost with Perceptrons

For the 12 data sets we use, 200 epochs seem sufficient for all perceptron learning algorithms to
achieve a reasonable solution. Thus our base learners for AdaBoost are the perceptron learning
algorithms with 200 epochs. We run AdaBoost up to 200 iterations. Often when the sample distri-
bution becomes far away from the initial uniform one, the base learner fails to find a perceptron
with a small training error because the cost function it tries to minimize becomes so different from
the training error. When this happens, AdaBoost stops at some iteration earlier than 200. We
record the training error, test error, as well as the number of iterations, at the end of the AdaBoost
run. The numbers are averaged over 500 random splits of the original data set.

We tried resampling and reweighting with pocket, ave-perc, SGD-hinge, and SGD-mls. There was
no significant difference in the training error, test error, or the number of AdaBoost iterations. We
also tested the two initialization methods for perceptrons, zero vector and FLD, and found that
there was no decisive advantage in one or the other. So we only list the results of the simplest
setting, reweighting and initialization with the zero vector, in Table 4.



Perceptron Learning with Random Coordinate Descent 13

Table 4: Test errors (%) and number of iterations (#ite) of AdaBoost (the #ite of the first three algorithms is 200)

data set RCD RCD-bias pocket ave-perc #ite SGD-hinge #ite SGD-mls #ite

australian 15.45 ± 0.12 15.49 ± 0.12 15.75 ± 0.12 13.61 ± 0.12 6.4 15.97 ± 0.13 12.3 14.00 ± 0.12 8.8

breast 3.21 ± 0.06 3.34 ± 0.06 3.41 ± 0.07 3.35 ± 0.06 3.2 3.27 ± 0.06 7.4 3.24 ± 0.06 4.7

cleveland 18.00 ± 0.21 18.22 ± 0.21 18.95 ± 0.20 16.81 ± 0.20 3.3 17.16 ± 0.20 10.0 16.74 ± 0.20 5.9

german 25.17 ± 0.13 25.37 ± 0.12 25.57 ± 0.13 23.25 ± 0.12 2.9 23.71 ± 0.13 9.2 23.96 ± 0.13 7.5

heart 17.60 ± 0.21 17.58 ± 0.22 18.94 ± 0.21 16.55 ± 0.20 3.0 16.95 ± 0.21 10.7 16.54 ± 0.20 5.3

ionosphere 10.36 ± 0.16 10.30 ± 0.16 11.65 ± 0.17 13.21 ± 0.17 6.9 11.71 ± 0.17 25.3 12.67 ± 0.17 11.0

pima 24.87 ± 0.14 24.79 ± 0.14 25.15 ± 0.14 22.77 ± 0.14 3.0 23.18 ± 0.14 4.9 23.01 ± 0.14 4.5

ringnorm 8.60 ± 0.05 12.22 ± 0.07 7.12 ± 0.04 39.29 ± 0.08 2.3 27.41 ± 0.22 29.2 38.32 ± 0.09 2.1

sonar 16.44 ± 0.25 16.06 ± 0.25 25.02 ± 0.27 25.77 ± 0.27 199.7 21.23 ± 0.27 195.5 25.37 ± 0.27 146.7

threenorm 14.51 ± 0.02 15.34 ± 0.03 14.95 ± 0.02 16.14 ± 0.02 2.7 16.27 ± 0.02 5.2 16.17 ± 0.02 3.9

votes84 4.25 ± 0.09 4.24 ± 0.09 4.54 ± 0.10 4.74 ± 0.10 7.0 4.78 ± 0.10 32.4 4.68 ± 0.10 7.8

yinyang 3.95 ± 0.03 3.98 ± 0.03 4.87 ± 0.02 19.25 ± 0.02 2.5 19.11 ± 0.02 2.6 19.23 ± 0.02 2.7

(results within one standard error of the best are marked in bold)

First we notice that algorithms not aiming at minimizing the training error, ave-perc, SGD-hinge,
and SGD-mls, do not really benefit from working with AdaBoost. Their numbers of iterations are
usually small, and the test errors are similar to those listed in Table 3.

AdaBoost with our RCD algorithms and pocket never early stops before the specified 200 iter-
ations. The resulted ensembles based on RCD and RCD-bias always achieve the zero training error,
and those based on pocket also almost always get the zero training error. For about half of the data
sets, they also achieve the lowest test errors.

5 Conclusion

We proposed a family of new perceptron learning algorithms that directly optimizes the training
error. The main ingredients are random coordinate descent (RCD) and an update procedure to
efficiently minimize the training error along the descent direction. We also discussed several possible
approaches to initialize the algorithms and to choose the descent directions. Our experimental
results showed that RCD algorithms were efficient, and usually achieved the lowest training errors
compared with several other perceptron learning algorithms. This property also makes them ideal
base learners for AdaBoost.

We discussed the resampling and reweighting approaches to making several other perceptron
algorithms work with AdaBoost. However, most of them optimize cost functions other than the
training error, and do not benefit from aggregating. In contrast, the test error may be dramatically
decreased if RCD algorithms and the pocket-ratchet algorithm are used with AdaBoost.

For noisy and/or high-dimensional data sets, regularized algorithms such as the averaged-
perceptron algorithm and the soft-margin SVM may achieve better out-of-sample performance.
Future work will be focused on regularizing RCD algorithms.

Acknowledgments

I wish to thank Yaser Abu-Mostafa, Hsuan-Tien Lin, and Amrit Pratap for many valuable discus-
sions. This work was supported by the Caltech SISL Graduate Fellowship.

References

Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford University Press.



14 Ling Li

Breiman, L. (1996). Bias, variance, and arcing classifiers (Technical Report 460). Department of
Statistics, University of California at Berkeley.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26, 801–824.
Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: A library for support vector machines. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Machine

Learning: Proceedings of the Thirteenth International Conference (pp. 148–156).
Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm.

Machine Learning, 37, 277–296.
Friedman, J. H. (1999). Regularized discriminant analysis. Journal of the American Statistical

Association, 84, 165–175.
Gallant, S. I. (1990). Perceptron-based learning algorithms. IEEE Transactions on Neural Net-

works, 1, 179–191.
Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases.
Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets.

Machine Learning, 11, 63–91.
Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to support vector classification

(Technical Report). National Taiwan University.
Li, L., Pratap, A., Lin, H.-T., & Abu-Mostafa, Y. S. (2005). Improving generalization by data

categorization. Knowledge Discovery in Databases: PKDD 2005 (pp. 157–168). Berlin: Springer-
Verlag.

Li, Y., & Long, P. M. (2002). The relaxed online maximum margin algorithm. Machine Learning,
46, 361–387.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review, 65, 386–408.

Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the theory of brain mecha-

nisms. Washington, DC: Spartan.
Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new

explanation for the effectiveness of voting methods. The Annals of Statistics, 26, 1651–1686.
Shavlik, J. W., Mooney, R. J., & Towell, G. G. (1991). Symbolic and neural learning algorithms:

An experimental comparison. Machine Learning, 6, 111–143.
Vapnik, V. N. (1998). Statistical learning theory. Adaptive and Learning Systems for Signal

Processing, Communications, and Control. New York: John Wiley & Sons.
Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient descent

algorithms. Proceedings of the 21st International Conference on Machine Learning. Omnipress.


