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Abstract

The superior out-of-sample performance of AdaBoost has been attributed
to the fact that it minimizes a cost function based on margin, in that it can
be viewed as a special case of AnyBoost, an abstract gradient descent
algorithm. In this paper, we provide a more sophisticated abstract boost-
ing algorithm, CGBoost, based on conjugate gradient in function space.
When the AdaBoost exponential cost function is optimized, CGBoost
generally yields much lower cost and training error but higher test error,
which implies that the exponential cost is vulnerable to overfitting. With
the optimization power of CGBoost, we can adopt more “regularized”
cost functions that have better out-of-sample performance but are diffi-
cult to optimize. Our experiments demonstrate that CGBoost generally
outperforms AnyBoost in cost reduction. With suitable cost functions,
CGBoost can have better out-of-sample performance.

1 Introduction

AdaBoost [4] is probably the most popular algorithm among the boosting family which
generates a linear combination of weak hypotheses. Given a weak learnerL, AdaBoost
iteratively adds hypotheses generated byL to the linear combination. It emphasizes difficult
examples by giving them higher sample weights and favors hypotheses with lower training
errors by giving them larger coefficients. AdaBoost can be viewed as a special case of
AnyBoost [7], a general gradient descent in function space.

It has been observed experimentally that AdaBoost keeps improving the out-of-sample er-
ror even after the training error of the linear combination has reached zero [2]. One expla-
nation to this is that AdaBoost improves the margins of the training examples even after all
the examples have positive margins, and larger margins imply better out-of-sample perfor-
mance [9]. However, this explanation was challenged in [5] where the algorithms achieve
larger minimum margins than AdaBoost, but do not have better out-of-sample performance
than AdaBoost, mostly worse. Another related explanation is that AdaBoost optimizes a
cost function based on example margins [7]. Although there is a theoretical bound on the
out-of-sample error based on cost, it is still unclear whether minimizing the cost is helpful
in practice.

We take a closer look at this question, examining how the cost function, in and of itself,
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affects the out-of-sample performance. To do so, we apply more sophisticated optimization
techniques directly to the cost function. We obtain three sets of results:

1. The introduction of a new abstract boosting algorithm, CGBoost, based on con-
jugate gradient in function space which has better cost optimization performance
than AnyBoost.

2. The conclusion that AdaBoost cost function is much more vulnerable to overfitting
when it is directly minimized instead of being minimized within the confines of
the AdaBoost algorithm.

3. The identification of more “regularized” cost functions whose direct minimiza-
tion results in a better out-of-sample performance than that of the AdaBoost cost
function.

The paper is organized as follows. The CGBoost algorithm and its implementation with
the margin cost functions are introduced in Section 2. In Section 3, we compare CGBoost
and AnyBoost with two different cost functions. One cost function is observed to have
better out-of-sample performance but is more difficult to optimize. CGBoost has superior
performance than AnyBoost with that cost function. We then give results on some UCI
data sets in Section 4.

2 CGBoost

We assume the examples(x, y) are randomly generated according to some unknown prob-
ability distribution onX × Y whereX is the input space andY is the output space. Since
this paper focuses on voted combinations of binary classifiers,Y = {−1, 1}.
The voted combination issign(F (x)) where

F (x) =
T∑

t=1

αtft(x)

with weak hypothesesft : X → Y from a base learning modelG, and hypothesis coef-
ficientsαt ∈ R+. Let lin(G) denote the set of all linear combinations (with nonnegative
coefficients) of functions inG, andC : lin(G) → R+ be a cost function. We want to
construct a combinationF ∈ lin(G) to minimizeC(F ).

2.1 AnyBoost: Gradient Descent

AnyBoost [7] is an abstract boosting algorithm that provides a general framework for min-
imizing C iteratively via gradient descent in function space.

Suppose we have a functionF ∈ lin(G) and we wish to find a “direction”f ∈ G so that
the costC(F + εf) decreases for some small positiveε. The desired direction such that
the cost decreases most rapidly (for smallε) is the negative functional gradient−∇C(F ),
where

∇C(F )(x) =
∂C(F + τ1x)

∂τ

∣∣∣∣
τ=0

,

where1x is the indicator function ofx. In general, it may not be possible to choosef =
−∇C(F ) sincef has to be one of the hypotheses inG. So, instead, AnyBoost searches for
f that maximizes〈−∇C(F ), f〉.1 After f is fixed, a line search can be used to determine

1The inner product〈·, ·〉 is define onlin(G). Generally, we wantf ∈ G to maximize thenor-
malized inner product〈−∇C(F ), f〉 /

√
〈f, f〉. For the inner product definition (4) used in this

paper and some other papers [7],〈f, f〉 is a constant for binary classifiers. So there is no need for
normalization.



the coefficient off in the new combination of hypotheses.

2.2 CGBoost: Conjugate Gradient

If we replace gradient descent in AnyBoost with the more efficient conjugate gradient tech-
nique [8, §12.4], we obtain a new and more powerful abstract boosting algorithm: CGBoost
(Algorithm 1). The main difference between conjugate gradient and gradient descent is that
the former also utilizes the second-order information of the cost to adjust search directions
so that the cost could be decreased faster.

Let dt denote the search direction at iterationt, andft ∈ G denote the weak hypothesis ap-
proximating the negative functional gradient−∇C(F ). Instead of lettingdt = ft directly,
we choose the search direction to be

dt = ft + βtdt−1, (1)

whereβt ∈ R anddt−1 is the direction from last iteration. With this change, the search
directiondt is no longer limited to a single hypothesis inG. Instead, it is some linear
combination of the current and previousft’s and thusdt ∈ lin(G).
The βt in equation (1) determines how much the previous search directiondt−1 affects
the current directiondt. If βt = 0, dt is solely determined by the current gradientft,
which usually helps conjugate gradient recover from some bad situations [8, pp. 408]. In
Algorithm 1, β1 is effectively forced to be0 sinced0 is initialized to0. For reasons that
will be explained in Section 3,βt is also clipped to0 for the first several iterations. For
other cases, we can use the Polak-Ribiére formula [8, pp. 399]

βt =
〈ft, ft − ft−1〉
〈ft−1,ft−1〉

(2)

which automates the “restart” mechanism.

Although the search direction of CGBoost is more complicated than that of AnyBoost, the
combinationFT is still a linear combination of (at most)T weak hypotheses inG, since all
dt are in the space spanned by{f1, . . . , fT }. For i ≤ t, define

βi,t =

{∏t
j=i+1 βj , if i < t;

1, if i = t.

Algorithm 1 CGBoost: Conjugate gradient in function space.
Require:

• A base learning modelG and an inner product defined onlin(G).
• A differentiable cost functionC : lin(G)→ R+.
• A weak learnerL(F ) that acceptsF ∈ lin(G) and returnsf ∈ G with a large

value of〈−∇C (F ) , f〉.
1: F0 ← 0, d0 ← 0
2: for t = 1 to T do
3: ft ← L(Ft−1)
4: dt ← ft + βtdt−1 for someβt ∈ R
5: if 〈−∇C(Ft−1), dt〉 ≤ 0 then
6: return Ft−1

7: end if
8: Ft ← Ft−1 + αtdt for someαt > 0
9: end for

10: return FT



We then havedt =
∑t

i=1 βi,tfi, and

FT =
T∑

t=1

αtdt =
T∑

i=1

(
T∑

t=i

αtβi,t

)
fi. (3)

If the base learning modelG is negation closed, which is trivially true for almost all rea-
sonable binary classification models, it is obvious thatFT ∈ lin(G). In the following
subsection, we will see a definition for the inner product that also guarantees the coeffi-
cients in (3) are nonnegative. If it is the size of linear combinations that generally decides
the complexity of the combination, these features imply that using conjugate gradient will
not increase the complexity.

The search stepαt can be determined by some line search technique. Ifαt−1 ensures that
∇C(Ft−1) ⊥ dt−1 (which could be achieved by anexactline search), we have

〈−∇C(Ft−1), dt〉 = 〈−∇C(Ft−1), ft〉 .
That is, the adjusted directiondt is just as close to−∇C(Ft−1) asft is, whileft is guar-
anteed by the weak learnerL to be a good approximation of the negative gradient.

2.3 CGBoost with Margin Cost Functions

Commonly used cost functions are usually defined on example margins. Given a training
setS = {(x1, y1), . . . , (xN , yN )} of N examples, the margin cost ofF has the form

C(F ) =
1
N

N∑
i=1

c(yiF (xi)),

whereyiF (xi) is the margin of example(xi, yi) andc : R→ R+ is a (decreasing) function
of the margin. We may thus usec(·) to refer the whole cost functionC.

The inner product between hypothesesf andg is defined as

〈f, g〉 =
1
N

N∑
i=1

f(xi)g(xi). (4)

In this case,

〈−∇C(F ), f〉 =
1

N2

N∑
i=1

yif(xi) · [−c′(yiF (xi))] .

Maximizing 〈−∇C(F ), f〉 is thus equivalent to minimizing the training error with sample
weightD(i) ∝ −c′(yiF (xi)). This explains why a weak learnerL is used in Algorithm 1
to returnf that has a large value of〈−∇C(F ), f〉.
For a binary classifierf , the definition in (4) gives〈f, f〉 ≡ 1. Then equation (2) becomes

βt = 1− 〈ft, ft−1〉
which is always nonnegative.

Algorithm 2 summarizes the implementation of CGBoost with margin cost functions.

3 Cost Functions

The frameworks of CGBoost and AnyBoost leave the choice of cost functions open to users.
However, not all the cost functions are suitable for learning purposes. We will discuss two
cost functions in this section as well as the performance of CGBoost and AnyBoost on
these cost functions.



Algorithm 2 CGBoost with margin cost functions
Require:

• A base learning modelG containing hypothesesf : X → {−1, 1}.
• A differentiable cost functionc : R→ R+.
• A weak learnerL(S, D) that accepts a training setS and a sample distribution

D and returnsf ∈ G with small weighted error
∑

i D(i) [f(xi) 6= yi].
1: F0 ← 0, d0 ← 0
2: for t = 1 to T do
3: Dt(i)← c′(yiFt−1(xi))/

∑N
j=1 c′(yjFt−1(xj)) for i = 1, . . . , N

4: ft ← L(S, Dt)
5: dt ← ft + βtdt−1 for βt = 1− 〈ft−1, ft〉
6: if

∑N
i=1 Dt(i)yidt(xi) ≤ 0 then

7: return Ft−1

8: end if
9: Ft ← Ft−1 + αtdt for someαt > 0

10: end for
11: return FT

3.1 AdaBoost Exponential Cost

When the margin cost functionc(ρ) = e−ρ is used, AnyBoost is equivalent to AdaBoost
[7]. To have a taste of the performance of CGBoost, we compare CGBoost using this cost
function with AdaBoost. Since the same cost function is used, this is a comparison between
two optimization methods.

The data set used in this comparison was generated by the Caltech Data Engine2. The input
space isX = R8 and output space isY = {−1, 1}. We use 400 examples for training and
3000 examples for testing. Our learning modelG contains decision stumps and the weak
learnerL returns the decision stump with best weighted training error.

The results averaged over 132 independent trials are shown in Figure 1(a). We can see
that, though the cost from AdaBoost was lower on average during the first 20–30 iterations,
CGBoost overall decreased the cost faster and achieved a significantly lower cost. The
training error, with similar trend as the cost, was also decreased much faster by CGBoost.

However, the out-of-sample behavior was the opposite. Noticing that AdaBoost got over-
fitting after roughly 50 iterations, the deteriorating out-of-sample performance of CGBoost
implies that the exponential cost function is more vulnerable to overfitting when optimized
directly and more aggressively.

This result is of no surprise since the exponential cost function has a very steep curve for
negative margins (see Figure 2) and thus emphasizes “difficult” examples too much [3, 5, 6].
While better optimization techniques can help decreasing the cost faster, the out-of-sample
performance would be mainly determined by the cost function itself.

Based on the observation of this comparison, we setβt = 0 for the first several iterations
in the following experiments to take advantage of the initial efficiency of gradient descent.

2The Caltech Data Engine [1] is a computer program that contains several predefined data models,
such as neural networks, support vector machines (SVM), and radial basis functions (RBF). When
requested for data, it randomly picks a model, generates (also randomly) parameters for that model,
and produces random examples according to the generated model. A complexity factor can be spec-
ified which controls the complexity of the generated model. The engine can be prompted repeatedly
to generate independent data sets from the same model to achievesmall error barsin testing and
comparing learning algorithms.
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(a) Exponential cost
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(b) Bisigmoid cost

Figure 1: Performance of CGBoost (solid curves) and AnyBoost (dashed curves) with two
different cost functions. (a) AnyBoost with exponential cost is equivalent to AdaBoost;
(b) Bisigmoid cost withκ+ = 1 andκ− = 1.05 in (5). Since[ρ < 0] ≈ 1

2c(ρ) when|ρ| is
large, the training error and cost (scaled by 50) coincide quite well.

3.2 Bisigmoid Cost

Because of the power of conjugate gradient as an optimization technique, one can afford
to use more “regularized” cost functions that are harder to optimize but have better out-of-
sample performance.

The sigmoid margin cost functionc(ρ) = 1 − tanh(ρ)
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Figure 2: Three margin cost
functions.

was suggested in [7]. Since it has a flatter part for negative
margins compared to the exponential cost (see Figure 2),
it does not punish outliers too much. However, this cost
function causes difficulties to AnyBoost and CGBoost. If
the weak learnerL finds the optimal hypothesis for the
uniform sample distribution, AnyBoost and CGBoost will
terminate at the second iteration due toc′(−ρ) = c′(ρ)
(Proof is similar to [7, Lemma 12.9]).

A simple technique to avoidc′(−ρ) = c′(ρ) is to concate-
nate sigmoid functions with different slopes for negative
margins and positive margins. Below is what we call the
bisigmoidfunction:

c(ρ) =
{

κ+ − κ+ tanh(ρ/κ+), for ρ > 0;
κ+ − κ− tanh(ρ/κ−), otherwise.

(5)

whereκ+ andκ− are positive numbers controlling the slopes for positive and negative
margins, respectively. We usually setκ− > κ+ so that the negative margins could also be
emphasized a bit more. The closerκ− is toκ+, the more similar the bisigmoid curve is to
a scaled sigmoid.

We applied CGBoost and AnyBoost with the bisigmoid function (κ+ = 1 andκ− = 1.05)
to the problem in Subsection 3.1. Again we observed in Figure 1(b) that CGBoost opti-
mized the cost and training error faster, though this time with the bisigmoid function, the



cost could not be reduced to near zero and the training error was also above zero. How-
ever, we observed much better out-of-sample performance of both CGBoost and AnyBoost,
compared to test errors in Figure 1(a). On average,CGBoost achieved the lowest test error.

This result reinforces the idea that the cost functions have great impact on the out-of-sample
performance, while the optimization techniques only help to a lesser extent.

4 Experimental Results

We compared CGBoost and AnyBoost on six UCI data sets3 with the exponential cost
function and the bisigmoid cost function.κ+ is fixed to1 in all these experiments. Since
the value ofκ− decides how flat the bisigmoid is and thus how difficult the optimization is,
we tried four values ofκ−, namely,1.05, 1.1, 1.15, and1.2. We observed that the smaller
κ− is, the more difficult the optimization is.

Each data set was randomly partitioned so that 80%, 10%, and 10% of the examples were
used for training, validation, and testing. CGBoost and AnyBoost with different cost func-
tions were allowed to run 300 iterations. Results were averaged over more than 60 trials.

Table 1 gives the geometric mean of the cost ratios between two optimization algorithms,
CGBoost and AnyBoost, at the final iteration. As we expected, the cost of CGBoost is
generally much lower than that of AnyBoost.

Cost Function pima sonar clevel vote84 cancer iono
exponential 0.5716 0.0000 0.0675 0.1006 0.0656 0.0000
κ− = 1.05 0.8067 0.2674 0.6882 0.4997 0.8896 0.9949
κ− = 1.2 0.7615 0.0000 0.6374 0.8058 0.9011 0.0000

Table 1: The average final cost ratio of CGBoost to AnyBoost. Numbers less than0.00005
are shown as0.0000. To save space, the ratios withκ− = 1.1 andκ− = 1.15 are omitted.

We also compared the out-of-sample performance of these two algorithms. During one
trial, the linear combination with the best validation error was picked. That is, for the
exponential cost, validation chose the size of boosting; for the bisigmoid cost, validation
also chose the “optimal”κ− value.

The average test errors are listed in Table 2. Though it seems that CGBoost did not yield
better test errors, the results from these algorithms are similar, and the relatively high error
bars prevent us from drawing statistically significant conclusions for these limited data sets.

Cost Method pima sonar clevel vote84 cancer iono
exp. AnyBoost 25.10% 19.74% 16.56% 4.38% 5.38% 11.42%
exp. CGBoost 25.72% 22.02% 17.83% 4.46% 4.99% 12.62%

bisigmoid AnyBoost 25.83% 23.97% 16.45% 4.59% 4.14% 11.49%
bisigmoid CGBoost 26.25% 24.07% 17.77% 4.67% 4.78% 11.77%

roughly error bar 4.85% 9.22% 7.45% 3.04% 2.60% 5.59%

Table 2: Average test errors of CGBoost and AnyBoost on six UCI data sets. The lowest
error in each column is in bold font. The error bars are much higher than the differences.

3The six UCI data sets are pima-indians-diabetes, sonar, cleveland-heart-disease, voting-records,
breast-cancer-wisconsin, and ionosphere. Examples with missing features are removed from the
original data sets.



5 Conclusions

AdaBoost can be viewed as gradient descent of the exponential cost function in function
space. In this paper, we introduced a new boosting algorithm, CGBoost, based on conjugate
gradient in function space. We demonstrated with Caltech Data Engine data and UCI data
that CGBoost generally optimized the cost faster and achieved much lower training error.

We also observed that the exponential cost of AdaBoost was much more vulnerable to
overfitting when it was minimized by the more aggressive CGBoost. The bisigmoid cost
function which has a flatter part for negative margins was introduced to alleviate the over-
fitting problem. It also avoids the optimization difficulties that normal sigmoid function
might have. Our experiments showed that, though it is harder to optimize, it generally
leads to better out-of-sample performance. CGBoost with the bisigmoid cost yielded the
lowest test error with Data Engine data.

However, the impact of cost functions on the out-of-sample performance still remains un-
clear, partly due to the statistically insignificant results on the UCI data sets.
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