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Abstract. In most of the learning algorithms, examples in the training
set are treated equally. Some examples, however, carry more reliable or
critical information about the target than the others, and some may carry
wrong information. According to their intrinsic margin, examples can be
grouped into three categories: typical, critical, and noisy. We propose
three methods, namely the selection cost, SVM confidence margin, and
AdaBoost data weight, to automatically group training examples into
these three categories. Experimental results on artificial datasets show
that, although the three methods have quite different nature, they give
similar and reasonable categorization. Results with real-world datasets
further demonstrate that treating the three data categories differently in
learning can improve generalization.

1 Introduction

Machine learning is an alternative approach to system design. Instead of the
conventional way of mathematically modeling the system, the role of learning
is to take a dataset of examples, such as input-output pairs from an unknown
target function, and synthesize a hypothesis that best approximates the target.
The dataset, acting as the information gateway between the target and the
hypothesis, is thus at the heart of the learning process.

Generally, every example in the dataset is treated equally and no example is
explicitly discarded. After all, each example carries its own piece of information
about the target. However, if some of the examples are corrupted with noise,
the information they provide would be misleading. In this case, it is better to
identify and remove them, which can be performed either explicitly by an out-
lier detection preprocessing step [1], or implicitly in the learning algorithm via
regularization [2].

Even in cases where all the examples are noiseless, there are situations in
which we want to deal with examples differently. For instance, in large datasets
which often contain redundant examples, a subset of informative examples that
carries most of the information is usually more desirable for computational rea-
sons [3]. In cases where none of the hypotheses can perfectly model the target,
it is better to discard examples that cannot be classified correctly by any hy-
pothesis as they may “confuse” the learning [4].

Most existing methods that treat examples differently tend to group exam-
ples into two categories based on different criteria: consistent vs. inconsistent
(outliers) [1], easy vs. hard [5], typical vs. informative [3], etc. In this paper,
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we introduce the concept of intrinsic margin as a criterion for grouping data
and motivate the need to have three categories instead of two. We present three
methods to automate the categorizing. We show that by treating examples in
these three categories differently, we can improve the generalization performance
of learning on real-world problems. In addition, the categorization can be used
to reduce the dataset size without affecting the learning performance.

The paper is organized as follows. The formal framework of learning is defined
in Sect. 2. Then in Sect. 3, we introduce the concept of data categorization and
present our methods for automatic categorization. Results on artificial and real-
world datasets are presented in Sects. 4 and 5. We finally conclude in Sect. 6.

2 Learning Systems

In learning problems, examples are in the form of input-output pair (x, y). We
assume that the input vectors x ∈ X are generated independently from an
unknown probability distribution PX , and the output labels y ∈ Y are computed
from y = f(x). Here the unknown function f : X → Y is called the target
function. In this paper, we shall only focus on binary classification problems,
in which Y = {−1, 1}. We further assume that f comes from thresholding an
intrinsic function fr : X → R, i.e., f(x) = sign(fr(x)), where the magnitude of
fr(x) corresponds to the reliability of the output f(x). For example, if the target
function f(x) indicates whether a credit card should be issued to a person x,
the intrinsic function fr(x) could be the aligned credit score of the person.

For a hypothesis g : X → Y and an example (x, y), a commonly used error
measure (loss function) is

e(g(x), y) = [g(x) 6= y] ,

where the Boolean test [·] is 1 if the condition is true and 0 otherwise. Then, for
a target function f , we can define the out-of-sample error of g as

π(g) = Ex∼PX [e(g(x), f(x))] .

The goal of learning is thus to choose a hypothesis g that has a low out-of-sample
error π(g) from a set of candidate hypotheses, namely the learning model G.

However, π(g) cannot be directly computed because the distribution PX and
the target function f are both unknown. The only information we can access
is often limited in the training set D, which consists of N examples (xi, yi),
i = 1..N . Thus, instead of looking for a hypothesis g with low π(g) values, a
learning algorithm may try to find g that minimizes an estimator of π(g). A
commonly used estimator is the in-sample error ν(g) on the training set D,

ν(g) = ν(g,D) =
1

N

N
∑

i=1

e (g(xi), yi) .

For a fixed hypothesis g, ν(g) is an unbiased estimator of π(g), and when the
size of D is large enough, statistical bounds guarantee that ν(g) and π(g) would
not differ by too much.
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Note that the learning algorithm searches the whole learning model G for a
suitable hypothesis rather than focusing on a fixed one. In this case, the proba-
bility that ν(g) and π(g) differs for some g ∈ G gets magnified by the complexity
of G. Thus, the hypothesis found might fit the training set well while still having
a high out-of-sample error [2]. This situation is called overfitting, which arises
when good in-sample predictions do not relate to good out-of-sample predictions.
The situation can become worse when the examples contain noise. Then, fitting
the training set well means fitting the wrong information, which leads to bad
out-of-sample predictions.

Learning algorithms often try to avoid overfitting through regularization [2].
Regularization usually enforces a trade-off between the complexity of G and
the necessity to predict the training examples correctly. If we can characterize
the usefulness of each training example, the learning algorithm can then be
guided to focus on predicting important examples correctly, leading to a more
meaningful regularization trade-off and thus a better generalization performance.
This motivates our work to categorize the training examples.

3 Data Categorization

The purpose of data categorization is to group examples according to their use-
fulness to learning so that it is possible to treat them differently. Guyon et al. [3]
grouped data into two categories, typical and informative. However, they found
that the category of informative examples contained both useful examples and
noisy ones. Thus, they needed human-based post-processing to eliminate the
noisy examples. Similar problems are encountered in other methods that use
two-group categorization. This shows that we need to have more than two cate-
gories. In this paper, we fit the need by having three categories: typical, critical
and noisy.

Although all examples carry information about the target, they are not equal
in the sense that some examples carry more useful information about the target
than others, and some examples may misguide the learning algorithm. For in-
stance, in classification problems, an example close to the class boundary gives
more critical information than an example deep in the class territory. In addi-
tion, real-world data often contain mislabeled examples, which compromise the
ability of the in-sample error to approximate the out-of-sample error and lead
to bad generalization.

One way to categorize examples based on the above intuition is through
the concept of intrinsic margin. For an example (x, y), its intrinsic margin is
yfr(x), where fr is the implicit intrinsic function defined in Sect. 2. Under some
reasonable smoothness assumption, the intrinsic margin can be treated as a
measure of how close the example is to the classification decision boundary. If
the intrinsic margin is small positive, the example lies near the decision boundary
and should be categorized as critical. If the margin is large positive, the example
is far from the boundary and should be categorized as typical. Examples with
negative intrinsic margin are mislabeled, and should be classified as noisy. Thus,
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we may use two thresholds, 0 and some small positive value, to partition the
intrinsic margin and categorize the data.

In practical situations, it is impossible to calculate the intrinsic margin unless
the intrinsic function is known. However, since we are only interested in thresh-
olding the intrinsic margin, any monotonic function of the intrinsic margin can
be used with appropriate thresholds. Next, we propose three different methods
to estimate such functions for automatically categorizing the data.

3.1 Selection Cost

Bad generalization arises when the in-sample error is a bad indicator of the out-
of-sample error. A particular example (x, y) may deteriorate the generalization
performance if its error is a bad indicator of the out-of-sample error. Based on
this intuition, Nicholson [4] suggested to use the correlation coefficient between
e(g(x), y) and π(g) under a prior distribution PG for g,

ρ(x, y) = corrcoefg [e(g(x), y), π(g)]

=
Eg [e(g(x), y)π(g)] − Eg [e(g(x), y)] Eg [π(g)]

√

Varg [e(g(x), y)] Varg [π(g)]
,

to measure how well the individual error e(g(x), y) indicates π(g). A positive
correlation ρ indicates that if g has a low error on this example, it is likely to
have a low out-of-sample error, too. This is formalized in Theorem 1.

Theorem 1. If the learning model G is negation symmetric (i.e., PG [g] =
PG [−g] for any g ∈ G),

ρ(x, y) ∝ Eg [π(g) | g(x) 6= y] − Eg [π(g) | g(x) = y] , (1)

where the proportional constant is positive and depends only on G.

Proof. For a given example (x, y) and PG , let pi = Pr [e(g(x), y) = i] and πi =
Eg [π(g) | e(g(x), y) = i] for i = 0, 1. We have p0 + p1 = 1, and

Eg [e(g(x), y)π(g)] = p1π1, Eg [π(g)] = p0π0 + p1π1,

Eg [e(g(x), y)] = p1, Varg [e(g(x), y)] = p0p1.

Hence with the definition of ρ(x, y),

ρ(x, y) =
p1π1 − p1 (p0π0 + p1π1)

√

Varg [e(g(x), y)] Varg [π(g)]
= (π1 − π0)

√

p0p1

Varg [π(g)]
.

When G is negation symmetric, it is trivial that p0 = p1 = 1
2 for any (x, y). So

the proportional ratio is a constant. ut

The conditional expectation π1 (π0) is the expected out-of-sample error of hy-
potheses that predict (x, y) wrongly (correctly). In the learning process, we can
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select hypotheses that agree on (x, y) or those that do not. The difference be-
tween the two conditional expectations is thus the relative change in the average
out-of-sample error, and is called the selection cost. If there were only one ex-
ample to learn, a positive selection cost would imply that we should choose a
hypothesis that agrees with it. When a dataset is concerned, the selection cost
indicates, at least qualitatively, how desirable it is to classify the example cor-
rectly. Since the correlation ρ is just a scaled version of the selection cost, we
will use the name selection cost for both quantities in the following text.

In practice, the selection cost of an example (xi, yi) is inaccessible because
π(g) cannot be computed. However, we may estimate π(g) by the leave-one-out
error1 ν(i)(g) = ν (g,D\{(xi, yi)}). The selection cost can then be estimated, by
random sampling over the learning model, as the correlation coefficient between
e(g(xi), yi) and ν(i)(g). This works well even in the presence of noise [4].

Note that for Theorem 1 to be meaningful, the actual learning model has to
be used to estimate the selection cost. Under suitable choices of model complex-
ity, however, relaxing this requirement often does not affect the performance in
experiments. In this paper, we shall use neural networks as our underlying model
when computing the selection cost.

We categorize an example as typical if its selection cost is greater than a
threshold tc, noisy if the cost is less than a threshold tn, and critical if the cost
lies between the two thresholds. Since a negative selection cost implies that it is
better to misclassify the example, zero is an ideal threshold to separate noisy and
noiseless examples. We choose thresholds around zero, tc = 0.15 and tn = −0.1,
to accommodate estimation errors. Better categorization may be obtained by
further estimating the optimal thresholds; but for the illustration purpose of
this paper, we use ad hoc thresholding for all our methods.

3.2 SVM Confidence Margin

The support vector machine (SVM) [2] is a learning algorithm that finds a large-
confidence hyperplane classifier in the feature space. Such classifier is usually
obtained by solving the Lagrange dual problem:

min
α

1

2

N
∑

i=1

N
∑

j=1

αiαjyiyjK (xi,xj) −
N

∑

i=1

αi

s.t.
∑N

i=1yiαi = 0, 0 ≤ αi ≤ C.

Here the kernel K (x,x′) is an inner product of the transformed x and x′ in the
feature space, and C is the regularization parameter. SVM predicts the label of
x as the sign of g̃(x) =

∑N

i=1 αiyiK (xi,x) + b. We call yig̃(xi) the confidence
margin of the example (xi, yi). This concept is related to the intrinsic margin,
but comes specifically from the view of a learning algorithm.

1 To avoid a positive bias in estimating ρ, which can be easily verified from a formula
similar to (1), we do not use the in-sample error ν.
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The Lagrange multiplier αi and the confidence margin yig̃(xi) are also closely
related:

– When αi = 0, we have yig̃(xi) ≥ 1. The example is typical because the
confidence margin is large.

– When αi > 0, we have yig̃(xi) ≤ 1. The example is a support vector and is
informative for evaluating g̃(x).

Guyon et al. [3] used the relative magnitude of αi as a criterion for automated
identification and elimination of noisy examples with C = ∞. Somehow they
found that the criterion failed to distinguish critical examples from noisy ones
cleanly, and hence they proposed human-based post-processing to manually elim-
inate the noisy ones. The situation becomes even more confusing when C is finite,
simply because we cannot tell whether examples with αi = C are critical or noisy
without other means.

In this paper, we propose to use the confidence margin yig̃(xi) as the criterion
for categorization, which works well with a suitable choice of finite C. The ideal
thresholds, according to the relationship between the confidence margin and αi,
would be tn = 0 and tc = 1. For robustness, we use slightly different ad hoc
values tn = 0.05 and tc = 0.95. We apply the popular Gaussian kernel with
grid-based parameter search [6], and train an SVM with the best parameter to
compute the confidence margin.

3.3 AdaBoost Data Weight

AdaBoost [7] is an algorithm to improve the accuracy of any base learner by it-
eratively generating a linear ensemble of base hypotheses. During its iterations,
some examples are more likely to be misclassified than others, and are thus
“hard” to learn [5]. AdaBoost maintains a set of weights for the training exam-
ples and gradually focuses on hard examples by giving them higher weights. At
iteration t, the ensemble g̃t(x) =

∑t

s=1 αshs(x) is constructed, where hs is a base

hypothesis and αs is the coefficient for hs. The data weight w
(t)
i , proportional to

e−yig̃t(xi), is thus tightly related to the ensemble confidence margin yig̃t(xi), and
shows how hard it is to get an example correct at iteration t [7]. For instance,
noisy examples tend to get misclassified a lot by base hypotheses and would have
very large weights for most of the iterations; Typical examples, on the contrary,
are almost always classified correctly and would have small weights. Thus, the
average weight over different iterations can be used for data categorization.

Note that examples with smaller average weights are usually more reliable.
For consistency with the other two methods, we actually use the negative of
the average weight to approximate the intrinsic margin. For a set of size N , the
initial weight is 1/N . Thus, we use tc = −1.05/N and tn = −2.1/N to categorize
examples with average weights slightly above the initial weight as critical, and
examples with even higher average weights as noisy. We observe that these ad hoc
thresholds work well under a common AdaBoost setting: 1000 iterations with
the decision stump as the base learner.
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Merler et al. [5] used the concept of misclassification ratio, the fraction of
times an example is misclassified when it is not in the training set, to detect
hard examples. Since they used resampling instead of reweighting in AdaBoost,
in each iteration, the training set is sampled based on the data weight, and the
misclassification ratio of an example is computed only when the example is not
picked for training. This method however has a drawback that hard examples
tend to have large weights and so are almost always picked in the training set.
Thus the misclassification ratio is computed from a very small number of cases
and is not very reliable, especially for critical and noisy examples.

We compared the misclassification ratio and the average data weight, and
found that the average data weight is a better indicator of the intrinsic margin,
as seen from Fig. 2.

4 Experiments with Artificial Data

We first test our methods for data categorization on three artificial targets (de-
tails in Appendix A), for which the intrinsic function is known. For each target,
a dataset of size 400 is randomly generated, and the outputs of 40 examples
(the last 10% indices) are further flipped as injected outliers. The ability of
each method to capture the intrinsic margin is examined in two steps, the two-
category experiments and the three-category experiments.

4.1 Two-Category Experiments

As mentioned previously, we try to construct a measure which is monotonic in
the intrinsic margin. The scatter plots of two measures used in our methods
versus the intrinsic margin (Fig. 1) show the overall monotonic relationship.
However, we also observe that the monotonicity is not perfectly honored locally,
and the degree of inconsistency depends on the dataset and the method used.

−1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

5

6

Intrinsic margin

S
V

M
 c

o
n

fi
d

en
ce

 m
ar

g
in

−8 −6 −4 −2 0 2 4 6 8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Intrinsic margin

S
ca

le
d

 s
el

ec
ti

o
n

 c
o

st

Fig. 1. Correlation between the measures and the intrinsic margin for the NNet dataset
with the SVM confidence margin (Left) and the Sin dataset with the selection cost
(Right). Noisy examples with negative intrinsic margins are shown as filled squares.
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Fig. 2. ROC curves comparing the performance of all the methods on artificial datasets
NNet (Left) and Sin (Right).

The scatter plots also show that our methods can reasonably group the data
into noiseless (including typical and critical) and noisy categories, since the mis-
labeled examples are mostly cluttered in the bottom half of the plots. Figure 2
shows the receiver operating characteristic (ROC) curves for such categoriza-
tion, where the false positive rate is the portion of noiseless examples being
categorized as noisy. The ROC curves of two other methods, namely, the SVM
Lagrange coefficient [3] and the AdaBoost misclassification ratio [5], are also
plotted. These curves show that our methods, SVM confidence margin and Ada-
Boost data weight, surround larger area underneath and hence are much better
than the related methods in literature for two-group categorization.

4.2 Three-Category Experiments

To visually study the nature of the data categorization obtained by the three
methods, we design fingerprint plots, in which examples are positioned according
to their intrinsic value fr(xi) on the vertical axis and their index i in the dataset
on the horizontal axis. Examples are also marked as typical, critical, and noisy,
as assigned by the categorization method.

An ideal fingerprint plot would have the last 10% of the examples, which
are mislabeled, categorized as noisy. The plot should also have a band of critical
examples around the zero value. Figure 3 shows the fingerprint plot for the NNet
dataset with the selection cost as the categorization method. Since the target
function is in the model for estimating the selection cost, the categorization is
near perfect. Figure 4 shows fingerprint plots for two other cases, where we do
not have perfect categorization, and some of the critical examples are categorized
as outliers and vice versa. This is partly due to the ad hoc thresholding used to
categorize the examples. Similar results are obtained for the other combinations
of dataset and method.

Figure 5 shows the categorization results for the two 2-D datasets visually.
First, we notice that almost all the mislabeled examples are detected as noisy
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Fig. 3. Fingerprint plot of the NNet dataset with the selection cost. Critical and noisy
examples are shown as empty circles and filled squares, respectively.
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Fig. 4. Fingerprint plots of the Yin-Yang dataset with the SVM confidence margin
(Left), and the Sin dataset with the AdaBoost data weight (Right).

(shown as �), while very few of them are wrongly categorized as critical (�). Some
clean examples, mostly those around the decision boundary, are also categorized
as noisy (•), partly explained with the ad hoc thresholding. Secondly, we can see
that most of the identified critical examples (◦ or �) are around the boundary or
the outliers, which is desired since examples there do provide critical information
about the target.

5 Real-World Data

When the dataset has been categorized, it is possible to treat different data
categories differently in learning. For example, we can remove the noisy exam-
ples and also emphasize the critical examples, and intuitively this would help
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Fig. 5. 2-D categorization with the SVM confidence margin on artificial datasets Yin-
Yang (Left) and Sin (Right). The 10% mislabeled examples are shown in squares and
the 90% correctly labeled ones are shown in dots or circles. The three categories are
shown as dots (typical), empty circles or squares (critical), and filled circles or squares
(noisy).

learning.2 To demonstrate that such a simple intuition based on our data cat-
egorization methods can be quite useful in practice, we carry out experiments
on seven datasets3 from the UCI machine learning repository [8]. Their input
features are normalized to the range [−1, 1]. Each dataset is randomly split into
training and testing parts with 60% of the data for training and rest for testing.
The data categorization methods4 are applied to the training set, and noisy ex-
amples are then removed. We further emphasize the critical examples by giving
them twice the weight of the typical ones. A 500-iteration AdaBoost of decision
stumps is used to learn both the full training set and the filtered one. The test
error averaged over 100 runs is reported in Table 1 together with its standard
error. It is observed that removing the noisy examples and emphasizing the crit-
ical ones almost always reduces the test error. The exceptions with the selection
cost method should be due to a possible mismatch of complexity between the
underlying model of the selection cost and the learning model used in AdaBoost.

Although details are not included here, we also observed that the test error,
when we just removed the noisy examples, was not statistically different from

2 We do not flip the noisy examples since the categorization may not be perfect. If
a noiseless example is marked as noisy, flipping it brings a relatively high risk. So
removing the noisy examples would be a safer choice.

3 They are australian (Statlog: Australian Credit Approval), breast (Wisconsin Breast
Cancer), cleveland (Heart Disease), german (Statlog: German Credit), heart (Stat-
log: Heart Disease), pima (Pima Indians Diabetes), and votes84 (Congressional Vot-
ing Records), with incomplete records removed.

4 Note that the feed-forward neural networks for estimating the selection cost have
one hidden layer of 15 neurons.
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Table 1. Test error (%) of AdaBoost with 500 iterations

dataset full dataset selection cost SVM margin AdaBoost weight

australian 16.65 ± 0.19 15.23 ± 0.20 14.83 ± 0.18 13.92 ± 0.16
breast 4.70 ± 0.11 6.44 ± 0.13 3.40 ± 0.10 3.32 ± 0.10

cleveland 21.64 ± 0.31 18.24 ± 0.30 18.91 ± 0.29 18.56 ± 0.30
german 26.11 ± 0.20 30.12 ± 0.15 24.59 ± 0.20 24.68 ± 0.22
heart 21.93 ± 0.43 17.33 ± 0.34 17.59 ± 0.32 18.52 ± 0.37
pima 26.14 ± 0.20 35.16 ± 0.20 24.02 ± 0.19 25.15 ± 0.20

votes84 5.20 ± 0.14 6.45 ± 0.17 5.03 ± 0.13 4.91 ± 0.13

the case when we also emphasized the critical examples. However, we found
that removing the critical examples almost always increased the test error, and
removing as much as 50% of the typical examples did not affect the test error
by much. This clearly shows the distinction between the three categories.

6 Conclusion

We proposed the concept of grouping data into typical, critical, and noisy cate-
gories according to the intrinsic margin, and presented three methods to auto-
matically carry out the categorization. The three methods, rooted from different
parts of learning theory, are quite different in the models they use and the way
they approximate the intrinsic margin. However, they still gave similar catego-
rization results on three artificial datasets, which established that the concept is
independent of the methods. The categorization results can be used in conjunc-
tion with a large variety of learning algorithms for improving the generalization.
The results on the UCI datasets with AdaBoost as the learning algorithm demon-
strated the applicability of the methods in real-world problems. In addition, the
categorization can also be used to reduce the dataset size without affecting the
learning performance.

Further work needs to be done to estimate the optimal thresholds from the
dataset (say, using a validation set [5]), to better utilize the categorization in
learning, and to extend the framework for regression problems.

A Artificial Targets

We used three artificial target functions in the paper.

3-5-1 NNet. This is a feed-forward neural network with 3 inputs, 5 neurons
in the hidden layer, and 1 output neuron. All neurons use tanh (sigmoid) as
the transfer function. The weights and thresholds are randomly picked with a
Gaussian distribution N (0, 0.72). The continuous output from the output neuron
is used as the intrinsic value fr.
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Yin-Yang. A round plate centered at (0, 0) in R
2 is partitioned into two classes

(see Fig. 5). The “Yang” (white) class includes all points (x1, x2) that satisfy

(d+ ≤ r) ∨
(

r < d− ≤ R
2

)

∨
(

x2 > 0 ∧ d+ > R
2

)

,

where the radius of the plate is R = 1, the radius of two small circles is r = 0.18,

d+ =
√

(x1 −
R
2 )2 + x2

2, and d− =
√

(x1 + R
2 )2 + x2

2. Points out of the plate

belong to the Yang class if its x2 > 0. For each example, we use its Euclidean
distance to the nearest boundary as its intrinsic margin.

Sin. The Sin target in [5] is also used in this paper (see Fig. 5). It partitions
[−10, 10]× [−5, 5] into two class regions, and the boundary is

x2 =

{

2 sin 3x1, if x1 < 0;

0, if x1 ≥ 0.

As in the Yin-Yang target, the distance to the nearest boundary is used as the
intrinsic margin.
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