
Distributed Learning in Swarm Systems:

A Case Study

Thesis by

Ling Li

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

California Institute of Technology

Pasadena, California

2002

(Submitted May 31, 2002)

ii

c© 2002

Ling Li

All Rights Reserved

iii

Acknowledgements

It is my great pleasure to thank my advisor Professor Yaser S. Abu-Mostafa for his

help, support, and guidance throughout my research and studies.

Dr. Alcherio Martinoli was invaluable in getting me started and providing many

helpful and insightful suggestions along the way. Discussions with him were always

fruitful and enjoyable.

I would like to acknowledge Lavanya Reddy and Eric Tuttle for having imple-

mented a first version of the ∆-method used in this thesis.

I owe a lot to Alexander Nicholson, who helped me in many aspects of daily life

and research, especially for proofreading all my slides and writing on this work.

My fellow members of the Learning Systems Group have provided me with many

valuable discussions and helpful suggestions for my work. In addition to those already

mentioned, my thanks go to Amir Atiya, Igor Bargatin, Dustin Boswell, Gentian Buzi,

Carl Gold, Nathan Gray, Malik Magdon-Ismail, and Amrit Pratap.

Finally, I thank my family, especially my wife and parents-in-law, for their endless

love and support.

This work was supported by the Caltech Center for Neuromorphic Systems En-

gineering, a National Science Foundation supported Engineering Research Center,

under NSF Cooperative Agreement EEC-9402726.

iv

Abstract

This thesis investigates several learning issues in swarm systems under a case study—

the stick pulling experiment. This is a strictly collaborative problem where collabo-

ration between non-communicating robots is required to complete the task. We base

our experiments on a probabilistic model which is faithful in simulating experiments

with real robots. We extend the systematic search with early stopping and get the

optimal performances of fully heterogeneous teams consisting of 2–6 robots.

By integrating learning ability into individual robots, the whole team can adapt

according to environmental changes and can maintain a near-optimal performance.

We test several learning algorithms, including adaptive line search and Q-learning.

We find, for this case study, that learning algorithms which directly search for optimal

parameters work much better than those based on reward estimation.

Compared with the optimal performance obtained from the systematic search, the

learned performance is a bit lower on average. We discuss several issues that may

hinder learning from finding the optimal parameters, such as different reinforcement,

noise, and adaptability. Our experiments show that, though learning cannot lead to

optimal performance, it does enhance adaptability and stability of the whole team.

As an untested hypothesis, we conjecture that any learning model can only achieve a

trade-off between optimality and adaptability.

Though the team is initially homogeneous, specialization is observed after learn-

ing. Our results show that policies allowing specialization achieve in general similar or

better performances than policies forcing homogeneity. We develop ad hoc methods

to measure the specialization, and find that a measure of specialization is sub-linear

to the number of robots.

v

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Swarm Systems . 2

1.2 Distributed Learning . 2

1.3 Overview . 3

2 The Stick Pulling Experiment 5

2.1 Experimental Setup . 5

2.2 Microscopic and Macroscopic Models 8

2.2.1 Handling Stochastic Events 10

2.3 Systematic Search with Early Stopping 11

2.3.1 Early Stopping . 12

2.3.2 Probability of Wrong Rejection 12

2.3.3 Optimal GTP Sets . 15

3 Learning Methods 17

3.1 Memoryless Adaptation . 18

3.2 Adaptive Line Search . 20

3.2.1 ∆-method . 21

3.2.2 %-method . 24

3.2.3 Mix-method . 27

vi

3.3 Q-Learning . 27

3.3.1 Settings . 29

3.3.2 Results . 30

3.4 Discussion . 31

4 Towards Optimal Performances 34

4.1 Local and Global Reinforcement . 34

4.2 Evaluation Time . 37

4.3 Precomputed Performance . 39

4.4 Training and Test Phases . 40

4.5 Multi-stage Test . 42

4.5.1 Changing Stick Density . 42

4.5.2 Adding/Removing Robots . 44

4.6 Discussion . 45

5 Measuring Specialization 47

5.1 Greedy Algorithm . 48

5.2 Best-Fit Algorithm . 50

5.3 Sub-linearity . 51

5.4 Random Test . 53

5.5 Discussion . 54

6 Conclusion 55

6.1 Future Directions . 56

Bibliography 58

vii

List of Figures

2.1 Physical set-up for the stick pulling experiment 6

2.2 Flowchart of the robots’ controller . 7

2.3 Collaboration rate as a function of GTP in homogeneous teams 9

2.4 Histograms of collaboration rate for fixed GTP sets 14

2.5 Optimal performances of homogeneous and heterogeneous teams 16

3.1 Performances with the memoryless adaptation algorithm 19

3.2 GTP curves with the memoryless adaptation algorithm 20

3.3 State diagram of the adaptive line search algorithm 21

3.4 Performances with the ∆-method . 23

3.5 GTP curves with the ∆-method . 23

3.6 Performances with the %-method . 25

3.7 GTP curves with the %-method . 25

3.8 Performances with the %-method and the 1000 sec upper limit 26

3.9 Performances with the mix-method . 27

3.10 GTP curves with the mix-method . 28

3.11 Performances with Q-learning (absolute actions and rewards) 30

3.12 Performances with Q-learning (preset GTPs as actions) 31

3.13 Performances with Q-learning (relative actions and rewards) 32

3.14 GTP curves with Q-learning . 32

4.1 Performances of heterogeneous teams under global reinforcement . . . 35

4.2 Performances of homogeneous teams under global reinforcement 36

4.3 Performances under different reinforcement and team diversity 36

viii

4.4 Performance vs. evaluation time . 38

4.5 Performance vs. evaluation time (extended training phase) 39

4.6 Performances of homogeneous teams with precomputed performance . 40

4.7 Performance differences between the training phase and the test phase 41

4.8 Performances under changing stick density 43

4.9 Performances under changing stick density (longer stage 2) 44

4.10 Performances under different numbers of robots 45

5.1 Number of clusters vs. simulation time (greedy algorithm) 49

5.2 Results of the greedy algorithm depend heavily on dmax 50

5.3 Number of clusters vs. simulation time (best-fit algorithm) 52

5.4 Number of clusters after learning under different reinforcement 52

5.5 Number of clusters after learning and with random GTP sets 53

ix

List of Tables

2.1 Optimal GTP sets gotten from the systematic search with early stopping 15

x

List of Algorithms

2.1 Systematic search with early stopping 13

3.1 Memoryless adaptation . 18

3.2 ∆-method adaptive line search . 22

3.3 %-method adaptive line search . 24

5.1 Greedy algorithm to find the number of clusters 48

5.2 Best-fit algorithm to find the number of clusters 51

1

Chapter 1

Introduction

In the last few years, there has been increased interest in swarm systems consisting

of multiple autonomous agents. Such systems can exhibit complex behavior which

appears to transcend the abilities of the relatively simple constituent individuals.

Perhaps the most striking examples are from nature: social insect colonies are able

to build sophisticated structures and regulate the activities of millions of individuals

by endowing each individual with simple rules. According to environmental changes,

a colony can adjust its behavior through assigning different numbers of insects to

different tasks or adjusting the behavior of individual insects. Scalability, flexibility

and robustness are three main advantages for such swarm systems (Bonabeau et al.

1999).

Researchers motivated by such observations have tried to extract ideas, models and

philosophies underlying natural swarm systems and apply them to artificial problems

(e.g., optimization problems such as the notable traveling salesman problem (Dorigo

and Gambardella 1997; Bonabeau et al. 2000)), and have had great success, even in

business (Bonabeau and Meyer 2001).

When applying rules extracted from natural systems to artificial problems, the

difference between the natural systems and artificial problems essentially requires dif-

ferent control parameters to be used. Learning, as an automatic way to adjust control

parameters, is used to adapt rules to new problems and to improve the performance.

Learning also serves as a way to adapt to a changing environment.

2

1.1 Swarm Systems

A social insect colony usually consists of millions of individuals. Though each indi-

vidual has very limited ability, the whole colony is able to do many sophisticated jobs

without a centralized control mechanism. In fact, social insects work autonomously,

and their teamwork is essentially self-organized. Coordination between individuals

arises from different interactions between insects or between insects and environment

(the stigmergic mechanisms). Although these interactions might be primitive, as a

whole they result in efficient solutions to difficult problems such as finding the shortest

route to a food source among myriad possible paths.

The collective behavior that emerges from social insects (Bonabeau et al. 1999), as

well as swarming, flocking, herding, and shoaling phenomena in vertebrates (Parrish

and Hamner 1997), has been dubbed swarm intelligence.

Artificial swarm systems based on swarm intelligence consist of relatively simple

autonomous agents. They are truly distributed, self-organized, and inherently scal-

able since there is no global control or communication mechanism. The agents are

designed to be simple and interchangeable, and may be dynamically added or re-

moved without explicit reorganization, making the collective system highly flexible

and fault tolerant.

Swarm systems can be homogeneous or heterogeneous. A homogeneous team con-

sists of physically identical agents with the same hardware and software capabilities.

A heterogeneous team may differentiate in several ways: at the hardware level, at

the (controller) software level, or simply because each agent has a different identifier.

Heterogeneity can be hardwired or plastic, that is, a homogeneous team can become

heterogeneous if the environmental constraints prompt this.

1.2 Distributed Learning

The learning issue in swam systems is how each agent can adapt its individual behav-

ior (update its strategy) so that the whole system can “maximize” the overall per-

3

formance under a changing environment (including the change of number of agents).

We call this distributed learning since it is the learning process happening at the

individual level under partial information about the global performance. There are

three main challenges specific to distributed learning:

• The environment that each agent can sense is only a small part of the overall

system. Though the agents may have a complete view of the whole system

by directly exchanging information, full communication is expensive in terms

of both production cost and energy consumption, and is infeasible for systems

consist of thousands or millions of agents. Thus, the learning of each agent is

usually conducted with only partial information.

• Secondly, the environment, including the number of agents, may vary from time

to time. Thus, the optimal strategy for an agent is not fixed. Each agent needs

to adjust its behavior according to the changing environment . In addition,

changes resulted from other robots can also require a strategy change for one

robot. Thus a collective experiment is intrinsically highly dynamic.

• The third challenge is the so-called credit assignment problem (Versino and

Gambardella 1997). Since the team performance is the result from all the agents,

it is usually hard for an agent to know the impact of its strategy change on the

overall performance. The situation is even worse when every agent changes its

strategy from time to time.

Besides these challenges, the time-delayed reward which is common in reinforcement

learning also brings difficulty to learning.

1.3 Overview

This thesis presents our work on distributed learning in swarm systems with a case

study—the stick pulling experiment. All experiments in this thesis are carried out

with a probabilistic model which faithfully simulates experiments with real robots.

4

Chapter 2 introduces the experiment as well as the probabilistic model. Our

implementation of the probabilistic model and a faster way to systematically search

for optimal control parameters are also presented.

Several learning algorithms, such as adaptive line search and Q-learning, and

team performances by using the algorithms, are collected in Chapter 3. Since we can

not get the optimal performances via learning, we investigate several issues related to

learning in Chapter 4, such as the role of noise affecting the reinforcement in learning,

and the contribution of learning on adaptability and optimality.

In Chapter 5 we try to measure the degree of specialization, which is a common

feature in social societies that leads to better performance. Results from learning are

compared with those from random tests to show that learning contributes something

unique to the team diversity.

5

Chapter 2

The Stick Pulling Experiment

Martinoli and Mondada (1995) and successively Ijspeert et al. (2001) investigated col-

laboration in teams of reactive, non-communicating robots engaged in a stick pulling

experiment. The swarm system they studied is relatively simple in that there is only

one adjustable control parameter for each robot. The task pursued in their experi-

ment requires the collaboration of two robots. It is the strictly collaborative nature

that makes this experiment interesting for investigation with distributed learning.

The stick pulling experiment and models for analyzing the experiment at different

levels are briefly described in this chapter. A systematic search was used by Ijspeert

et al. to find the optimal parameters for homogeneous teams and very simple het-

erogeneous teams. We extend their method with early stopping in this chapter and

apply it to fully heterogeneous teams.

2.1 Experimental Setup

In the stick pulling experiment, several robots equipped with gripper turrets and

proximity sensors search a circular arena and pull sticks out of holes in the ground

(Figure 2.1). The length of a stick has been chosen so that a single robot is not

capable of pulling a stick out of the ground on its own. Collaboration between two

robots is therefore necessary for completing this task. Each robot is characterized by

a gripping time parameter (GTP), which is the maximal length of time that a robot

waits for the help of another robot while holding a stick.

6

Figure 2.1: Physical set-up for the stick pulling experiment. Collaboration between
two robots is necessary to pull a stick out of the ground.

The behavior of a robot is determined by a simple hand-coded program (Fig-

ure 2.2). The default behavior is searching for sticks, that is, wandering in the arena

in a straight line until an object is detected by the frontal proximity sensors. If a stick

is detected in the subsequent distinguishing procedure, the robot backtracks a few

centimeters, grips the stick and pulls it up. During pulling, the robot can determine

whether another robot is already gripping the same stick by measuring the speed of

elevation of the gripper arm. If the elevation is fast, the robot assumes no other robot

is holding the stick and we call such a grip a grip1 . Otherwise the robot assumes

that another robot is already holding that stick and therefore “braking” the elevation.

Such a grip is called a grip2 .

After a robot makes a grip1, two cases can occur: either a second robot helps the

first one (we define this as a successful collaboration) or the GTP expires before any

other robot can help and the first robot resumes the search for sticks in the arena. The

specific values of GTPs play a crucial role in the overall collaboration rate (defined as

the number of successful collaborations per unit time), which is the metric adopted

in both previous papers (Martinoli and Mondada 1995; Ijspeert et al. 2001) and this

one for measuring the team performance. To ensure the collaboration rate is reliably

measured, experiments usually take a long time and a stick will be inserted back into

the hole (by the experimenter) after it is completely pulled out by robots.

In (Ijspeert et al. 2001), teams of two to six Khepera robots were used in a

circular arena (80 cm in diameter) delimited by a white wall. Four holes situated at

7

Y

N

N

N

N

Y

Y

Y

N

Y

Start

Grip and success dance

Obstacle?

Grip2?

Grip and wait

Time out?

Teammate help?

Obstacle avoidance

Release

Object detected?

Look for sticks

Detection

Figure 2.2: Flowchart of the robots’ controller.

the corners of a square with 30 cm edges contained sticks (15 cm in length and 1.6 cm

in diameter) which, in their lowest position, sticked 5 cm out of the ground. The same

setting is used in this thesis unless noted otherwise.

On average, the collaboration rate is a function of the environmental setting (in-

cluding the arena size, the number of sticks, and usually the number of robots) and

the GTP set (which is the set of GTPs of all robots in the arena). When the envi-

ronment is fixed, the team performance is a function of the GTP set. Note that when

the team is homogeneous, the GTP set is determined by a single scalar.

8

2.2 Microscopic and Macroscopic Models

One of the main difficulties in designing efficient robotic teams is to predict how

the team performance is affected by the hardware and software characteristics of the

constituent individuals. This is particularly difficult for a large number of robots con-

trolled in a fully distributed way. As experimenting with real robots is expensive and

time-consuming, embodied or sensor-based simulators that simulate as realistically as

possible the behavioral characteristics of the robots and the environment are usually

helpful in, for instance, determining the optimal number of robots or the optimal

control parameters for a robotic team, though these types of simulators still suffer

from the long time needed for simulation.

Martinoli et al. (1999b; 1999a) introduced a novel microscopic probabilistic model

which describes the experiment as a series of stochastic events. Ijspeert et al. ex-

tended the model to the stick pulling problem. An event in the probabilistic model

corresponds to some diamond in Figure 2.2 and a state corresponds to some rectan-

gle. For example, “object detected” is an event transiting a robot from the “look for

sticks” state to the “detection” state. The probabilistic nature of the stick pulling

experiment is captured by probabilistic events with probabilities based on simple

geometrical considerations and systematic experiments with one or two real robots.

Since the model does not compute the details of the robots’ trajectories and sen-

sory information, it has been proven to be four or five orders of magnitude faster than

real robot experiments. Experiments with real robots and Webotsi also showed that

this model is able to deliver both qualitatively and quantitatively accurate predictions

(Ijspeert et al. 2001).

The solid curves in Figure 2.3 illustrate the collaboration rate of a homogeneous

team in the stick pulling experiment generated from the probabilistic model. The

team exhibits quite different behaviors depending on the ratio between the number

of robots and the number of sticks. When there are more robots than sticks, the

collaboration rate monotonically increases with the GTP, until it reaches a plateau

iWebots is a sensor-based, embodied simulator (Michel 1998) and was also adopted in (Ijspeert
et al. 2001) to investigate the stick pulling experiment.

9

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 2.3: Collaboration rate as a function of GTP in homogeneous teams. Results
from two different ways of handling stochastic events are shown. The solid curves
are results from the event aligning technique and the dashed curves from the sorted
event list technique. 100 simulations, each taking 1600min, are run for every initial
GTP from the set {5k}120

k=0.

corresponding to the optimal collaboration rate for a homogeneous team. In other

words, since there will always be some robot “free” to help, waiting a very long time

is a good strategy for robots gripping sticks. However, when the number of robots

is less than or equal to the number of sticks, waiting a very long time may incur

“deadlock” (every robot holding a different stick and waiting for help but no one

having the chance to help others) and thus becomes a very bad strategy. The optimal

collaboration rate occurs at some small GTPs below 100 sec.

Lerman et al. (2001) presented a macroscopic analytical model of collaboration for

the stick pulling experiment. They used a simplified state diagram including different

states in a collaboration and used differential equations to describe the dynamics of

the system (e.g., number of robots in different states). They reproduced the main

qualitative conclusions of (Ijspeert et al. 2001).

Though analytical results seem inspiring, the macroscopic models have two ma-

jor drawbacks that prevent them from being used for more complicated teams, such

as fully heterogeneous teams. First, quantitatively correct macroscopic models based

10

uniquely on features of the individual agents are not always trivial to devise, in partic-

ular when agent-to-agent and agent-to-environment interactions are more complicated

than simple elastic bounces. Second, these models intrinsically imply homogeneity by

assuming that a certain number of agents can be clustered in a caste which in turn is

represented by a set of differential or difference equations. If a heterogeneous team is

treated as a collection of several homogeneous castes, the number of equations needed

by a fully heterogenous team prohibits further analysis.

2.2.1 Handling Stochastic Events

To handle the stochastic events in the probabilistic model, the program Ijspeert et al.

used checks every T timeii what events take place and then simulates them. In this

way, every event is aligned to a time grid kT where k is some integer, which also

implies that the time a robot stays in any state would be rounded to some multiple

of T . For states lasting much longer than T , rounding does not have much impact to

the simulated performance. However, when the time a robot spends in some state is

comparable to T , the error caused by rounding may accumulate to significant error

in the simulated team performance.

A better way to handle the stochastic events is to maintain an event list sorted

ascendingly according to event time. At each iteration, the first event in the list is

handled and new events caused by or affected by the current event are then inserted

to the list or updated. Figure 2.3 shows the slightly different team performances from

these two simulation techniques. The dashed curves generated from the sorted event

list technique are a little higher than the solid ones generated by event aligning.

After a careful examination of Figure 7 in (Ijspeert et al. 2001), we found that,

for two to four robots, the collaboration rate calculated by the probabilistic model

is a little higher than that by the Webots simulator, while for six robots, the former

is a little lower. Should the sorted event list technique be used, the collaboration

rate would be consistently a little higher than that from the Webots. Remember that

iiT is the time a robot needs to patrol the smallest detection area of an object in the arena, which
in this case study is the area to detect a stick.

11

parameters in the probabilistic model are determined based on simple geometrical

considerations and systematic experiments with one or two real robots. We believe

that after re-determining some parameters, the probabilistic model with the new

technique will agree better with the Webots.

However, we keep using the event aligning technique for two reasons. First, adopt-

ing the same technique as (Ijspeert et al. 2001) makes the comparison of our work with

their work easier. Second, the effect of learning should be independent from simula-

tion techniques. If we observe performance promoted by learning with one technique,

as long as the simulation model reflects the correct characteristics of the experiment,

the same observation should also be seen with another simulation technique.

2.3 Systematic Search with Early Stopping

In Chapter 3, we will present distributed learning algorithms which are able to find

near-optimal solutions with only local perception and adaptation. In order to compare

the learned performance with the optimal one, we are interested in finding the optimal

GTP sets that maximize the collaboration rate under a given environment. Note that

this is different from the task of learning since every detail about the environment is

invariant and known when we search for optimal GTP sets.

With the probabilistic model, we can systematically carry out simulations with

different GTP sets and then find the best one. Depending on the size of the search

space and the number of robots, such systematic investigation of the optimal GTP sets

could be prohibitively time-consuming. Ijspeert et al. only investigated teams with

one or two different GTPs, i.e., homogeneous teams and heterogeneous teams with

two GTPs. For the heterogeneous case, they used 10 predefined GTPs to confine the

search to a relatively small space. Their results showed that heterogeneity in GTPs

could increase the collaboration rate.

We use more predefined GTPs in the systematic search and obtain optimal GTP

sets for teams consisting of two to six robots. In the following text, we discuss the

early stopping technique used in our systematic search.

12

2.3.1 Early Stopping

During the systematic search, every possible GTP set whose GTP values are from a

predefined set Gs = {5k}20
k=1 ∪ {10k}15k=11 ∪ {175, 200, 250, 300, 400, 500, 750, 1000} is

tested. For each GTP set, we run 100 simulations and then calculate the mean and

the standard deviation of the collaboration rate. The time needed for simulation is

roughly (
|Gs|+ n− 1

n

)
RcnTs , (2.1)

where |Gs| = 43 is the number of possible choices for GTP, n is the number of robots,

R = 100 is the number of simulations for each GTP set, Ts is the experiment time we

want to simulate, and cn is the ratio between the time used for simulation and the

time simulated. Note that cn depends on both the computing resource used and the

environmental setting simulated, especially n.

It is tolerable to run all the simulations for two to four robots. For n = 4,

Ts = 160 min, the running time is roughly 7 hours using a 1G Hz Pentium machine.

However, the running time is too long when n > 4. Though it is possible to decrease

R or Ts, the stochastic nature of the experiment requires not-too-small R and Ts in

order to estimate the average collaboration rate with some accuracy.

Another way to work around the problem is to decrease R for some GTP sets—stop

investigating a GTP set as soon as statistically significant evidence has been collected

to show that the set is not likely to be optimal. One intuitive way to implement this

idea is as follows. During the systematic search, we keep recording the mean µ and

standard deviation σ of the to-date best performance. If during the simulation of the

current GTP set, at least 3 runs get a performance less than µ−2σ, we can reject this

set. This idea is further formalized in Algorithm 2.1. For the intuitive way discussed

above, m = 3 and x = 2 in the algorithm.

2.3.2 Probability of Wrong Rejection

Since a GTP set may be rejected earlier than it is fully tested for R runs, a natural

question is how reliable such rejection is. That is, with what probability will a GTP

13

Algorithm 2.1 Systematic search with early stopping.

Parameter: R is the number of runs for each GTP set, x is a real number, and m
is an integer.

Variable: G is the to-date best GTP set, and µ is the mean and σ is the standard
deviation of the performance of G.

1. µ← 0, σ ← 0.

2. For each GTP set Ĝ, do

(a) Simulate until all R runs are done, or m runs get performance less than
µ− xσ.

(b) If m runs get performance less than µ−xσ, continue to the next GTP set.

(c) Calculate the average performance µ̂ and standard deviation σ̂.

(d) If û > µ, do µ← µ̂, σ ← σ̂, G← Ĝ.

3. Return µ and σ as the optimal performance and its standard deviation, and G
as the optimal GTP set.

set whose collaboration rate is better than the to-date best one be rejected?

To answer this question, we should first know the possible distribution of collabo-

ration rate. Figure 2.4 shows four typical histograms of team performances with fixed

GTP sets, together with curves representing Gaussian distributions with mean and

variance calculated from the performance distributions. We believe the performance

with a fixed GTP set has Gaussian distribution.

Assume the performance of GTP set currently under testing also has standard

deviation σ (a not-always-true but reasonable assumption). We want to test the

hypothesis H that the mean performance of the current GTP set is at least µ. Under

hypothesis H, the probability that a single run has a collaboration rate less than

µ− xσ is

e1(x) =
1√
2π

∫ x

−∞
e−t2/2 dt . (2.2)

Since a rejection is made if and only if at least m out of R runs have performances

less than µ−xσ, the probability that the the set is rejected when hypothesis H holds

14

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2
0

5

10

15

20

25

30

35

40

45

D
en

si
ty

Collaboration rate (1/min)

(a) 3 robots

0.42 0.44 0.46 0.48 0.5 0.52 0.54
0

5

10

15

20

25

D
en

si
ty

Collaboration rate (1/min)

(b) 4 robots

0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06
0

2

4

6

8

10

12

14

16

18

D
en

si
ty

Collaboration rate (1/min)

(c) 5 robots

1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44
0

2

4

6

8

10

12

14

16

18

D
en

si
ty

Collaboration rate (1/min)

(d) 6 robots

Figure 2.4: Histograms of collaboration rate for fixed GTP sets. For each fixed
GTP set, 10000 simulations are run to get the histogram of performance, and the
bell-shaped curve is the Gaussian distribution with mean and variance calculated
from the simulation performance. (a) 3 robots with GTP set {200, 300, 400} (in
seconds); (b) 4 homogeneous robots with GTP 200 sec; (c) 5 robots, with GTP set
{100, 200, 300, 400, 500} (in seconds); (d) 6 homogeneous robots with GTP 300 sec.

15

(thus a wrong rejection) is

eR,m(x) = 1−
m−1∑
i=0

(
R

i

)
(1− e1(x))R−i e1(x)i . (2.3)

For R = 100, m = 3, and x = 2, we have e100,3(2) ≈ 40%, which seems a little

high. However, since many GTP sets have performances very close to the optimal

one—for example, for a team of 4 robots, the 10th best performance is within 99.3% of

the optimal one—using (m = 3, x = 2) is fine if we think that getting a near-optimal

GTP set is acceptable.iii The relatively large standard deviation in performance also

justifies the acceptance of a near-optimal GTP set.

A more conservative setting (m = 3, x = 2.4) gives e100,3(2.4) < 4.96%, which

takes much longer running time. Compared with the systematic search without early

stopping, the speed-up is about a factor of 10.

2.3.3 Optimal GTP Sets

Table 2.1 lists the optimal GTP sets we get by using Algorithm 2.1 with m = 3 and

Team size Optimal GTP set Performance
2 {5, 750} 0.1942± 0.0282
3 {5, 250, 500} 0.4206± 0.0491
4 {5, 110, 750, 750} 0.6811± 0.0610
5 {35, 100, 300, 750, 750} 1.0018± 0.0675
6 {400, 400, 400, 500, 500, 1000} 1.3777± 0.0792

Table 2.1: Optimal GTP sets gotten from the systematic search with early stopping.
R = 100, m = 3, and x = 2.4 in Algorithm 2.1.

x = 2.4. In Figure 2.5, we compare the optimal performances with homogeneous

teams, heterogeneous teams with two GTPs, and fully heterogeneous teams. Since

homogeneity is a special case of heterogeneity, it is expected that the optimal hetero-

geneous performance is always better than the optimal homogeneous performance.

However, fully heterogeneity does not have much advantage over the simple heteroge-

neous case with two GTPs, though the former is consistently better. The reason may

iiiThe probability that the top 10 best GTP sets are all rejected is less than 1%.

16

2 3 4 5 6
0

0.5

1

1.5

Number of robots

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

homogeneous
heterogeneous / 2 GTPs
heterogeneous / full

Figure 2.5: Optimal performances of homogeneous and heterogeneous teams. The
optimal performances of homogeneous teams are calculated by the original systematic
search and those of heterogeneous teams are calculated by the systematic search with
early stopping.

be intrinsically rooted in the task constraint, i.e., the requirement of the collaboration

between two robots.

If in order to pull a stick, three robots are required (e.g., longer sticks are used),

optimal teams may consists three different types of robots: (1) robots with large

GTPs are specialized for initiating the grip, (2) robots with median GTPs specialized

for helping the first robots, and (3) robots with small GTPs specialized for completing

grips. Under this task constraint, a fully heterogeneous team may be much better

than a team with only two GTPs.

17

Chapter 3

Learning Methods

One major advantage of systems consisting of multiple agents over those represented

by a single agent is their flexibility to allocate in time and space different numbers

of individuals to a given task or several sub-tasks (Bonabeau et al. 1999). However,

sometimes this characteristic is not enough to generate an optimal collective response

under certain environmental conditions. By combining collective flexibility with indi-

vidual adaptivity we can further enhance the robustness of the collective behavior and

obtain high system efficiency under a wider spectrum of environmental conditions. In

other words, since the parameter “number of individuals” of a swarm system could be

nonlinearly correlated with parameters characterizing the individual behavior, being

flexible in both parameter spaces allows us to optimize the overall performance of the

team, or optimize one dimension after having satisfied constraints on the other.

Ideally, we would like to have rules implemented on an individual agent, exclusively

based on its local perception, that evaluate how individual behavioral parameters

should change as a function of, for instance, the density of teammates. However,

designing such rules from scratch is difficult and usually requires at least a previous

systematic study in simulation in order to understand the macroscopic dependence of

the system dynamics on the microscopic changes. Machine learning methods represent

an effective alternative for finding out these rules or their parameters.

In this chapter, we will look at several learning algorithms and their effects on

GTP sets and team performances. The procedure used to assess a learning algorithm

consists of a training phase and a test phase. At the beginning of the training phase,

18

the team is homogeneous and initialized with an initial GTP . The learning algorithm

is then carried out with the simulation going on and changes the GTP of every robot.

After the 1600min (in simulation time) training phase, the GTP set is fixed and a test

phase with the same length as the training phase is used to calculate the performance

of the learned GTP set, which we call the learned performance. This procedure is

repeated 100 times for each initial GTP from the set {5k}120
k=0. The average learned

performance is compared to the performance without learning—the performance with

the initial GTP fixed.

The basic scenario we study is individual learning without communication. Each

robot adapts its GTP autonomously using the local reinforcement , which is the rate

of its successful collaborations (regardless of whether a robot was the first or the

second in gripping the stick).

3.1 Memoryless Adaptation

Intuitively, if a robot times out during a grip1, that is, no other robots come to

help, it should increase its GTP so that next time it will wait longer. In contrast,

if a robot gets the help from some other robot and completes a successful grip, it

may decrease its GTP since the current value may be longer than necessary. Based

on this idea of finding “proper GTPs” from the experience of timeout, we try the

algorithm in Algorithm 3.1. Note that all constants in the algorithm are ad hoc.

Since any adaptations made have nothing to do with the history, we name this method

memoryless adaptation.

Algorithm 3.1 Memoryless adaptation. GTP is updated after a time-out or a suc-
cessful collaboration.
After grip1, two outcomes may happen:

1. If the GTP expires, GTP← 1.3GTP + 1;

2. If some other robot comes to help, calculate the time w spent on waiting and
GTP← max {0.75GTP, 1.2w, 5};

19

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 3.1: Performances with the memoryless adaptation algorithm. Solid curves are
learned performances in the test phase while adaptation is used in the training phase.
Dashed curves are performances of homogeneous teams with fixed GTPs. Note that
the solid curves for two and three robots almost overlap with the GTP axis.

The collaboration rates after learning are drawn in Figure 3.1. As we could tell,

this naive algorithm suffers from several aspects. First, the strategy does not connect

GTP sets directly to team performances. For example, when the number of robots

is less than or equal to the number of sticks, large GTPs are more likely to cause

deadlock and should be avoided. Meanwhile, since robots do not “care” about the

performance, they tend to increase their GTPs when a time-out happens, which under

this situation increases the possibility of time-out. Thus GTPs are getting larger and

larger and the collaboration rate becomes very small. Second, the GTPs change all

the time and do not converge to some “optimal” set. Figure 3.2 depicts the GTP

curves for a single run of 4 robots and another single run of 6 robots. GTPs oscillate

violently, and for the team of 4 robots, they seem to be homogeneous.

As a second attempt, we consider a completely different strategy. A time-out

means lack of robots helping others, which should lead to a decrease of GTP, i.e., the

robot decides to help others; a successful grip means there are enough robots helping

others, and the GTP should be increased. Both this strategy and the previous one

could be correct under some situations. However, the lack of memory (some historical

20

0 200 400 600 800 1000 1200 1400 1600
10

1

10
2

10
3

10
4

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(a) 4 robots, 200 sec

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

350

400

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(b) 6 robots, 50 sec

Figure 3.2: GTP curves with the memoryless adaptation algorithm. Robots are
initially homogeneous. The curves are from single runs with (a) 4 robots with initial
GTP 200 sec, and (b) 6 robots with initial GTP 50 sec.

information) prevents a robot from choosing the right strategy.

3.2 Adaptive Line Search

For a single robot, its GTP is the only parameter and the searching for a good

GTP is one-dimensional. If we assume the environment and the GTPs of the other

robots are fixed, the team performance becomes a one-input function and the optimal

performance could be determined by searching in that dimension.

Note that the assumption we just made is unrealistic.i Integrated with learning,

the other robots also update their GTPs at their own paces. However, if we assume

the performance function changes gradually with time and take the line search as

a dynamic process, the line search technique could still be used to find the optimal

GTP. That is, we need a mechanism to “forget” the outdated performance data and

“reset” the search direction.

The learning principle we propose in this section is very similar to what a human

iIf homogeneity is forced via an external supervisor or global communication, the whole team is
represented by one GTP. Thus the search is still one-dimensional. However, the assumption does
not hold in general.

21

SWITCH DIR

worse better

FIRST TRY

worse better

SECOND TRY

worse better

Enlarge ∆d
GTP← GTP−∆d

Shrink ∆d

GTP← GTP + ∆d

d← −d

GTP← GTP + ∆d

GTP← GTP + ∆d

Randomly pick d
from {+,−}

Worse

Better

Figure 3.3: State diagram of the adaptive line search algorithm. GTP is adjusted
according to the current state and the performance change (better or worse). ∆d is
the search step in direction d.

being would do in a partially (locally) known environment (Figure 3.3). The robot

first tries to change its GTP in a randomly chosen direction (either increase it or

decrease it). After the change, the robot keeps that GTP for a small period of time

(default 10min), which we call the evaluation time, and monitors the performance

improvement. If the improvement is positive, the robot will continue in that direction;

if negative, the robot will undo the last change and try the other direction.

In addition to adapting the GTP, the search step (∆d in the graph) also varies.

When the same direction has been selected twice, the search step for that direction

is increased in order to speed up search in that direction. When the performance

observed oscillates, which implies that the current GTP is near the optimal one, the

search step is accordingly decreased to stabilize the performance. Thus this method

is called adaptive line search.

With slightly different updating rules, the three methods below are tested.

3.2.1 ∆-method

By adding a few details into Figure 3.3, we obtain the ∆-method described in Al-

gorithm 3.2. The algorithm gets its name from the fact that, after each evaluation

period, the GTP is changed by adding or subtracting some amount ∆d. The inclusion

of an evaluation period between states requires some adjustments to the algorithm,

which explains the minor difference between Figure 3.3 and Algorithm 3.2.

22

Algorithm 3.2 ∆-method adaptive line search. Note that there is an evaluation
period between each state so the algorithm is a little different from the state diagram
in Figure 3.3.

Input: P1 is the performance of this period.

Parameter: ∆min = 2 sec, ∆max = 60 sec, some coefficients such as 1.9.

Variable: State S, performance of last period P0, step sizes ∆+ and ∆−, direction
d ∈ {+,−}, number of successful GTP changes n.

The algorithm starts from the INIT state:

INIT: ∆+ ← ∆max, ∆− ← −∆max, and S ←SELECT.

SELECT: Randomly select d from {+,−}; set GTP← GTP+∆d, P0 ← P1, n← 0,
and S ←TRY.

TRY: If P1 > P0, n ← n + 1. If n ≥ 2, set ∆d ← 1.9∆d and n ← 0. Set
GTP← GTP+∆d, P0 ← P1, and S ←TRY. Otherwise if P1 ≤ P0, set GTP←
GTP−∆d, ∆d ← 0.5∆d, d← −d, GTP← GTP + ∆d, and S ←SWITCH.

SWITCH: If P1 > P0, set GTP← GTP + ∆d, P0 ← P1, and S ←TRY. Otherwise
set GTP← GTP−∆d, ∆d ← 0.5∆d, and S ←SELECT.

The ∆+ is always confined to [∆min, ∆max] and ∆− is confined to [−∆max,−∆min];
the GTP is forced to be larger than or equal to 5.

The ratios in enlarging the step size (1.9) and shrinking the step size (0.5) are

chosen in an ad hoc manner. We deliberately choose 1.9 so that one enlargement

and one reduction will not return to the original search step but a little smaller

(1.9× 0.5 < 1). This leads to a more conservative behavior.

Figure 3.4 shows that for some initial GTPs, the performance improves after

learning, and for the other portion of initial GTPs, learning does not help much.

Figure 3.5 gives typical GTP curves of two single runs. Though starting from a

homogeneous team, robots adjust their GTPs and improve the performance with

learning, and finally “stabilize” at usually different GTPs and form a heterogeneous

team. This is consistent with (Ijspeert et al. 2001) where experiments showed that,

when the number of robots is no more than the number of sticks, specialization should

help. More about the specialization issue will be discussed in Chapter 5.

23

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 3.4: Performances with the ∆-method. Solid curves are learned performances
with the ∆-method, and dashed curves are performances of homogeneous teams with-
out adaptation.

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

350

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(a) 4 robots, 200 sec

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(b) 6 robots, 50 sec

Figure 3.5: GTP curves with the ∆-method. Robots are initially homogeneous. (a) 4
robots with initial GTP 200 sec; (b) 6 robots with initial GTP 50 sec.

24

3.2.2 %-method

In the diagram for the ∆-method, the change of GTP is linear. That is, after k

updates, the change of GTP is no more than k∆max. However, as demonstrated in

Figure 2.3, the collaboration rate is much more sensitive to small changes in the GTP

when the GTP is “small” than when it is “large,” though “small” and “large” are

relatively vague here. Therefore, choosing the search step proportional to the absolute

value of the GTP may produce a more effective search in the GTP space, particularly

when the GTPs are large. This idea becomes the so-called %-method as described in

Algorithm 3.3.

Figure 3.6 gives a much better performance compared with the result from the

∆-method. The GTP curves in Figure 3.7 show that though some GTPs still remain

in the “small” range around the initial GTP, some are higher than 1000 sec.

Experiments with real robots may suggest not to use so large GTPs since waiting

Algorithm 3.3 %-method adaptive line search.

Input: P1 is the performance of this period.

Parameter: r+
min = 1.1, r+

max = 5, r−min = 0.9, r−max = 0.2, some coefficients.

Variable: State S, performance of last period P0, step ratios r+ and r−, direction
d ∈ {+,−}, number of successful GTP changes n.

The algorithm starts from the INIT state:

INIT: r+ ← r+
max, r− ← r−max, and S ←SELECT.

SELECT: Randomly select d from {+,−}; set GTP← GTP · rd, P0 ← P1, n← 0,
and S ←TRY.

TRY: If P1 > P0, n ← n + 1. If n ≥ 2, set rd ← rd + 0.3 (rd − 1) and n ← 0.
Set GTP ← GTP · rd, P0 ← P1, and S ←TRY. Otherwise if P1 ≤ P0, set
GTP ← GTP/rd, rd ← rd − 0.5 (rd − 1), d ← −d, GTP ← GTP · rd, and
S ←SWITCH.

SWITCH: If P1 > P0, set GTP ← GTP · rd, P0 ← P1, and S ←TRY. Otherwise
set GTP← GTP/rd, rd ← rd − 0.5 (rd − 1), and S ←SELECT.

The r+ is always confined to
[
r+
min, r

+
max

]
and r− is confined to

[
r−max, r

−
min

]
; the GTP

is forced to be larger than or equal to 5.

25

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 3.6: Performances with the %-method. Solid curves are learned performances
with the %-method, and dashed curves are performances of homogeneous teams with-
out adaptation.

0 200 400 600 800 1000 1200 1400 1600
10

0

10
1

10
2

10
3

10
4

10
5

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(a) 4 robots, 200 sec

0 200 400 600 800 1000 1200 1400 1600
10

0

10
1

10
2

10
3

10
4

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(b) 6 robots, 50 sec

Figure 3.7: GTP curves with the %-method. Robots are initially homogeneous. (a) 4
robots with initial GTP 200 sec; (b) 6 robots with initial GTP 50 sec.

26

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 3.8: Performances with the %-method and the 1000 sec upper limit. Compared
with Figure 3.6, the performance is improved (and the error bar is smaller) when there
are no more robots than sticks, and is worse when the robots are more than the sticks.

such a long time is intolerable. To validate this in the probabilistic model, we add

the 1000 sec upper limit of GTP to the algorithm in Algorithm 3.3 and obtain the

results of Figure 3.8. Compared with the results from the one without upper limit,

the performance is improved and the error bar is smaller when there are no more

robots than sticks; and the performance is worse when there are more robots than

sticks. These results imply that when the number of robots is larger than the number

of sticks, very large GTPs are preferred even if they seem intolerable; on the other

hand, when the number of robots is less than or equal to the number of sticks, bounded

(thus relatively small) GTPs are favored. The underlying reason could be found in

the explanation of Figure 2.3.

However, such properties would not be known beforehand, especially when the

environment is complex. So we pretend that we do not know this effect, and will not

apply the 1000 sec upper limit in future simulations.

27

3.2.3 Mix-method

Comparing Figure 3.4 with Figure 3.6, we can see that the ∆-method works well when

the initial GTP is small, and the %-method works better when the initial GTP is

large. A simple combination of these two methods (which we called the mix-method)

yields the overall best performance (see Figure 3.9 and Figure 3.10). In the mix-

method, each time the %-method and the ∆-method are carried out sequentially.

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 3.9: Performances with the mix-method. Solid curves are learned performances
with the mix-method, and dashed curves are performances of homogeneous teams
without adaptation.

3.3 Q-Learning

Reinforcement learning (Kaelbling et al. 1996) is the problem faced by an agent

that has to learn behavior through trial-and-error interactions with a dynamic en-

vironment. In this section, we present our experiments with one special form of

reinforcement learning, Q-learning (Watkins and Dayan 1992), applied to our case

study.

In Q-learning, an agent tries an action (using Boltzmann exploration) at a par-

ticular state, and evaluates its consequences in terms of the immediate reward or

28

0 200 400 600 800 1000 1200 1400 1600
10

0

10
1

10
2

10
3

10
4

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(a) 4 robots, 200 sec

0 200 400 600 800 1000 1200 1400 1600
10

0

10
1

10
2

10
3

10
4

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(b) 6 robots, 50 sec

Figure 3.10: GTP curves with the mix-method. Robots are initially homogeneous.
(a) 4 robots with initial GTP 200 sec; (b) 6 robots with initial GTP 50 sec.

penalty it receives and its estimate of the value of the state to which it is taken. The

basic form to update the Q value (the expected discounted reward) is

Q(s, a) := (1− α)Q(s, a) + α
[
r + γ max

a′
Q(s′, a′)

]
, (3.1)

where s′ is the successive state of state s after action a, r is the reward or penalty of

such action, α is the learning factor, and 0 ≤ γ < 1 is the discount factor. Watkins

and Dayan (1992) proved that Q-learning converges under some conditions. After

convergence, the optimal policy π∗ is

π∗(s) = arg max
a

Q(s, a) . (3.2)

Normal Q-learning uses discrete states and actions, and a look-up table to store

and update the values of Q.

29

3.3.1 Settings

To apply Q-learning to the stick pulling experiment, we need to decide what the state

s, the action a and the reward r are.

For the state s, it may consist of statistics that a robot could access during the

evaluation periodii

• grip1: number of grip1’s made;

• robot1: number of robots detected while doing grip1;

• robot2: number of robots detected while doing grip2;

• robot: number of robots detected;

• obst: number of obstacles (robots, sticks, wall) run into.

These statistics are related to robot density, stick density, and/or frequency that other

robots could come to help, thus may be useful for a robot to determine good GTPs.

An action could be the percentage to increase (if positive) or decrease (if negative)

the GTP, i.e., a relative action. It could also be directly used as the GTP, i.e., absolute

action. Accordingly, the reward (penalty) could also be relative or absolute—the

relative reward is the logarithmic performance change related to the action and the

absolute reward is the performance itself.

If discrete states and actions are used, we still have many choices with the gran-

ularity and distribution of the discrete states and actions. A finer granularity leads

to more accurate observation of states and finer tuned actions, while the increasing

number of states or actions requires longer time for Q-learning to converge.

The training phase is further divided into 2 parts. During the first part, robots

are given initial GTPs from the set {10 + 50k}11k=0 and a high temperature in the

Boltzmann exploration. This part tends to allow the robots to experience different

GTP sets and obtain some initial Q values. The high temperature prevents the early

part of learning from being stuck at local minima. The second part is similar to the

iiIn order to normalize them, simulations are used to determine the ranges.

30

training phase with the adaptive line search. Robots are endowed with initial GTPs

from the set {5k}120
k=0 and a lower temperature. This part is designed to tune the Q

values with more experiences and tries to converge to the optimal policy π∗. During

each part, the same procedure is repeated 100 times.

3.3.2 Results

Let’s first look at a typical result with discrete states and actions. Figure 3.11 shows

the collaboration rate in the test phase. The pair (grip1, robot1) with 25 discrete

values is used as the state, and absolute actions and rewards are used. The range for

an action is [4, 1000] and 8 uniformly distributed discrete values are used.

We also experiment with different granularities for the states and actions but have

not observed significant difference from Figure 3.11. With finer granularity of actions,

the average performance gets slightly better when the number of robots is 5 or 6, and

slightly worse when the number is between 2 and 4.

When using selected GTPs ({5, 30, 50, 200, 500, 1000}) instead of uniformly dis-

tributed values for the actions, the performance (Figure 3.12) gets a lot better for 2

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 3.11: Performances with Q-learning (absolute actions and rewards). 8 uni-
formly distributed values from [4, 1000] are used as the actions (directly used as the
GTPs).

31

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 3.12: Performances with Q-learning (preset GTPs as actions). Selected GTPs
({5, 30, 50, 200, 500, 1000}) are used as actions.

to 4 robots but worse for 5 or 6 robots.

With relative reward set to

log
performance

previous performance
, (3.3)

and relative action having 12 discrete values between −0.9 and 1.5, we get the results

shown in Figure 3.13. Again, we have not observed much difference in the results

when different granularities are used.

The same situation is observed when we used other state, action, and reward

combinations.

Figure 3.14 gives GTP curves for two simulations using absolute action and relative

action, respectively.

3.4 Discussion

Q-learning suffers from several drawbacks. First, Q-learning assumes full observation

of the environment. When only partial information is available, it is not guaranteed to

work. Second, while Q-learning is good at inferring time-delayed reward (through its

32

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 3.13: Performances with Q-learning (relative actions and rewards). 12 values
from [−0.9, 1.5] are used as relative actions.

0 200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

700

800

900

1000

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(a) Absolute actions

0 200 400 600 800 1000 1200 1400 1600
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Simulation time (min)

G
ri

p
p

in
g

 t
im

e
p

ar
am

et
er

 (
se

c)

(b) Relative actions

Figure 3.14: GTP curves with Q-learning. In both plots, 4 robots are initially homo-
geneous with GTP 210 sec. (a) Q-learning using absolute actions and rewards, as in
Figure 3.11; (b) Q-learning using relative actions and rewards, as in Figure 3.13.

33

γ discount feature), it has no mechanism to deal with the credit assignment problem

in a multi-agent space (Versino and Gambardella 1997). Third, since in the stick

pulling experiment there is no communication, the team performance only depends

on the environment and the current GTP set, Q-learning’s strength in time-delayed

reward is not exploited.

Similar observations were made in a case study of soccer teams (Salustowicz et al.

1998). Their simulation using several algorithms showed that direct search in policy

space could offer advantages over evaluation function-based approaches, such as Q-

learning.

However, if communication is introduced and robots share their policies and

episodes, Q-learning may do a better job. Kelly et al. (1997) tested a reinforce-

ment learning algorithm and showed that a robot that received the other robots’

experiences learned more quickly and robustly than a robot not receiving such infor-

mation, though the credit assignment problem is independent of whether policies are

shared or not (Salustowicz et al. 1998). Note that the conclusion may change in the

stick pulling experiment, in that the individual performance was optimized in (Kelly

et al. 1997), while in the stick pulling experiment, we want to optimize the team

performance.

34

Chapter 4

Towards Optimal Performances

Our results with learning (the overall best one is in Figure 3.9) show that learning

helps a lot when starting from random GTPs. The average performance after learning

is comparable to the optimal performance of homogeneous teams. However, compared

with the optimal heterogeneous performance, there is still room left for improvement.

As we will see in Section 4.1, if homogeneity is forced during learning, the learned

performance becomes much worse than the optimal homogeneous one. Parker and

Touzet (2000) also showed that, while the learning approach performs better than

random, naive approaches, much improvement is still needed to match the results

obtained from the hand-generated approach.

In this chapter, we try to understand the effect on learning of several issues, such as

local and global reinforcement, noise in the reinforcement, and we try to find out what

are the barriers between the learned solutions and the optimal solutions. We discuss

why learning, a procedure that tries to achieve both optimality and adaptability, has

to find a trade-off between these two goals, and cannot maximize both of them. We

call this the problem of trade-off between optimality and adaptability .

4.1 Local and Global Reinforcement

In previous experiments, individual robots were reinforced locally and were asked

to “learn” the optimal GTP set, which is essentially a global characteristic. While

local reinforcement is more realistic for a swarm system, global reinforcement , which

35

usually implies a supervisor that measures and broadcasts the team performance

to the individual robots, provides an interesting term of comparison. Using local

reinforcement (or global reinforcement combined with homogeneity) is a way to bypass

the credit assignment problem (Versino and Gambardella 1997) but it may not achieve

the best team performance (Murciano et al. 1997), which is the quantity we want

to improve. The global reinforcement has no such problem, but we have to face the

credit assignment problem.

Figure 4.1 shows that performances using global reinforcement are comparable to

those using local reinforcement (Figure 3.9), implying a good alignment between local

and global reinforcement.

When global reinforcement is used, we can force homogeneity by allowing one

robot to adapt and broadcasting the GTP of that robot to other robots. With-

out surprise, the learned performances (Figure 4.2) are lower than the performances

produced by policies that allow heterogeneity since the task constraint prompts for

specialization when there are no more robots than sticks. Another reason is that

homogeneity is only a special case of heterogeneity.

We end this section with a chart (Figure 4.3) comparing performances we get from

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 4.1: Performances of heterogeneous teams under global reinforcement. Solid
curves are learned performances with the mix-method, and dashed curves are perfor-
mances of homogeneous teams without adaptation.

36

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 4.2: Performances of homogeneous teams under global reinforcement. Solid
curves are learned performances with the mix-method, and dashed curves are perfor-
mances of homogeneous teams without adaptation.

2 3 4 5 6
0

0.5

1

1.5

Number of robots

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

heterogeneous / optimal
heterogeneous / local
heterogeneous / global
homogeneous / optimal
homogeneous / global

Figure 4.3: Performances under different reinforcement and team diversity. Perfor-
mances are obtained with the systematic search (see Figure 2.5) and after learning
under different reinforcement and team diversity.

37

different reinforcement and different team diversity. It is observed that the learning

can not achieve the optimal performance, no matter what kind of reinforcement is

used or what team diversity is allowed. An explanation to the limitation of learning

could be, for instance, that the noise affecting the reinforcement may prevent the

learning algorithm from converging to a good final choice of the GTP. As we will

see in the next two sections, noise from different sources plays an important role in

learning.

4.2 Evaluation Time

The stochastic nature of the stick pulling experiment as well as the simulation model

adds randomness, or noise, to the local reinforcement—the individual performance

a robot gets during an evaluation period is volatile. This definitely makes learning

difficult. We may decrease this randomness by increasing the evaluation time. Longer

evaluation time provides more accurate and stable reinforcement, thus improves the

learning, but the delay for a robot to react to environmental changes also becomes

longer. This is the first time we meet the problem of the trade-off between optimality

and adaptability.

The simulation results (Figure 4.4 and 4.5) validate our judgment about the per-

formance and the evaluation time. Long evaluation time improves both the quality

of GTP sets learned (which is reflected in the increasing test phase performance) and

the stability (which is reflected in the decreasing standard deviation). At the same

time, longer evaluation time also requires longer training time for the learning to

converge. With 6 robots and an extended 6400min training phase, the performance

resulted from long evaluation time (≥ 25 min) is better than those with a normal

1600min training phase.

However, even with long evaluation time, the difference between the learned per-

formance and the optimal performance does not decrease significantly, implying either

that the noise in the reinforcement is not the main barrier for learning, or that there

are still significant sources of noise other than short evaluation time.

38

5 10 15 20 25 30 35 40

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Evaluation time (min)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

with learning
optimal homo.

(a) 4 robots, training phase

5 10 15 20 25 30 35 40

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Evaluation time (min)
C

o
lla

b
o

ra
ti

o
n

 r
at

e
(1

/m
in

)

with learning
optimal homo.

(b) 4 robots, test phase

5 10 15 20 25 30 35 40
1.28

1.3

1.32

1.34

1.36

1.38

1.4

Evaluation time (min)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

with learning
optimal homo.

(c) 6 robots, training phase

5 10 15 20 25 30 35 40
1.28

1.3

1.32

1.34

1.36

1.38

1.4

Evaluation time (min)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

with learning
optimal homo.

(d) 6 robots, test phase

Figure 4.4: Performance vs. evaluation time. The rectangular region in each plot
represents the range of the performance of the optimal homogeneous team (its height
spans µ± σ, where µ is the mean performance and σ is the standard deviation).

39

5 10 15 20 25 30 35 40
1.28

1.3

1.32

1.34

1.36

1.38

1.4

Evaluation time (min)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

with learning
optimal homo.

Figure 4.5: Performance vs. evaluation time (extended training phase). The curve is
the performance of 6 robots in a 6400min training phase. See also Figure 4.4.

4.3 Precomputed Performance

When a robot adapts its GTP, it has to wait until an evaluation period ends to obtain

the new reinforcement associated with the new GTP value. This kind of delayed

reward also hinders the learning of optimal GTP sets. Longer evaluation time leads

to better evaluation of the reinforcement, but also introduces longer delay. Though

it is impossible to completely eliminate the noise or the delay between action and

reward in a real environment and in a collective scenario, doing so would be helpful

in better understanding the effect of noise and delayed reward on learning.

One way to eliminate the noise and delay is to use the precomputed performance

as the global reinforcement. That is, the performance of every possible GTP set

has been computed (through simulation) beforehand. During the training phase, the

current performance is thus obtained without delay by looking up the current GTP

set in the precomputed table. The learned performance using the precomputed table

should be the upper limit that the learning algorithm could achieve.

Since only for homogeneous teams we can run all the systematic simulations, we

only test learning with the precomputed performance for a homogeneous team. Under

this situation, the whole learning becomes a static one-dimensional line search without

noise. It is therefore not surprising that the performance is much better (Figure 4.6).

40

0 100 200 300 400 500 600
0

0.5

1

1.5

Initial gripping time parameter (sec)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

6 robots
5 robots
4 robots
3 robots
2 robots

Figure 4.6: Performances of homogeneous teams with precomputed performance. The
mix-method is used. See also Figure 4.2 for comparison.

When precomputed performance is used as the reinforcement, the role of the

evaluation time becomes trivial—it only controls the frequency with which a robot

updates its GTP. Different evaluation times (2min, 10min, and 40min) lead to almost

the same team performances, showing that the algorithm converges quickly under the

no-noise reinforcement.

4.4 Training and Test Phases

We have observed different team behaviors in the training phase and the test phase

(see Figure 4.4 for an example). The performance in the test phase is usually higher

but with larger deviation. This observation is quite consistent among different learn-

ing methods, different reinforcement and team diversity (Figure 4.7).

The only difference in the experimental setting between the two phases is that

learning is disabled in the test phase. Remember that the stick pulling experiment

is full of stochastic events. This observation implies that being able to learn has a

twofold effect: (1) adapting to the stochastic events so that the performance is more

stable; (2) adapting to “noisy” reinforcement even if this may divert the GTP set

from the optimal one which is unknown to the team.

41

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of robots

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

training phase
test phase

(a) Heterogeneous team (see Figure 3.9)

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of robots
C

o
lla

b
o

ra
ti

o
n

 r
at

e
(1

/m
in

)

training phase
test phase

(b) Homogeneous team (see Figure 4.2)

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of robots

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

training phase
test phase

(c) Heterogeneous team (see Figure 3.13)

Figure 4.7: Performance differences between the training phase and the test phase.
The performance in the test phase is usually higher than that in the training phase.
The deviation in the test phase is also larger. (a,b) Mix-method; (c) Q-learning with
relative actions and rewards.

42

This phenomenon again relates to the trade-off between optimality and adaptabil-

ity. From the viewpoint of a robot, it can not distinguish without delay whether a

change in its “local world” is caused by the environmental change, or by some ran-

domness. Time is needed for accumulating evidence to distinguish the two causes.

That is, some information can only be obtained with delay. If the robot wants to

catch up to the environmental change promptly, it has to use incomplete and some-

times wrong information. Thus the price of adaptability is some loss of optimality.

This is the reason that, during the training phase, the team has smaller standard

deviation while the average performance is lower than that in the test phase.

4.5 Multi-stage Test

To further investigate the issue of optimality and adaptability, we test the team

performance under a changing environment. The basic form is that we break the

simulation into several stages, and use different environmental settings (arena size,

number of sticks, and number of robots) for different stages. We are particularly

interested in how team performance changes according to environmental changes.

Environmental changes are simulated as realistically as possible—each robot, as a

separate process in the simulation, could sense the changes without knowing it, and

the learning process is not interrupted. That is, if possible, robots are not reset after

an environmental change and all historical learning information is kept. Note that

whenever a robot or a stick is removed from the arena, we need to check whether that

robot is doing a grip1 or whether that stick is held by some robot in order to update

the environment correctly.

4.5.1 Changing Stick Density

In this test, we change the stick density in the middle of the simulation by enlarging

the arena and changing the number of sticks. The simulation starts at time 0 with

the normal-size arena (80 cm in diameter), 4 sticks, and 6 robots. At time 1
3
Ts (here

Ts = 4800 min), the diameter of the arena is then increased to 100 cm and 4 other

43

sticks are added. At time 2
3
Ts, 4 sticks are removed from the arena but the size of the

arena remains unchanged. Thus we have a larger arena with 4 sticks. The simulation

ends at time Ts. We test the performance of 6 robots with and without learning.

When tested without learning, the robots are initialized with the optimal GTP

set we got from the systematic search with early stopping (see Section 2.3), i.e.,

{400, 400, 400, 500, 500, 1000}. 3000 runs are carried out to get the average perfor-

mance. The tests with learning are similar to those run in Chapter 3: 100 runs for

each initial GTPs in set {5t}120
t=0.

Figure 4.8 shows the average performance with the optimal GTP set and with

learning. Note that the optimal GTP set is only optimal for the normal-size arena

with 4 sticks. When the time reaches stage 2 (time between 1600min and 3200min),

the ratio between the number of robots and the number of sticks changes from 1.5

to 0.75, producing a dramatic drop in the collaboration rate. However, robots with

learning have a better position when the change happens and they continue increasing

the advantage by adapting to the new environment. When the second change comes,

0 800 1600 2400 3200 4000 4800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulation time (min)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

optimal GTP set
with learning

Figure 4.8: Performances under changing stick density. The solid curve is the average
performance of a heterogeneous team with the optimal GTP set. 3000 runs are
simulated. The dashed curve represents the average performance of a heterogeneous
team with the mix-method. For each initial GTP from {5t}120t=0, 100 runs are simulated.

44

0 800 1600 2400 3200 4000 4800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulation time (min)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

optimal GTP set
with learning

Figure 4.9: Performances under changing stick density (longer stage 2). See Figure 4.8
for details.

the optimal GTP set seems working well in a larger arenai and the performance of

the team without learning surpasses that of the team with learning. However, the

difference is not significant.

With a longer stage 2 (Figure 4.9), the team with learning definitely improves its

performance more during that stage.

4.5.2 Adding/Removing Robots

In this test, we still start from the normal arena, 4 sticks and 6 robots. At time 1
8
Ts,

two randomly chosen robots are removed from the arena and then at time 7
8
Ts, one

of the robots previously removed is added back to the arena. The test terminates at

time Ts. For the test without learning, the optimal GTP set used in the previous test

for 6 robots is also used here.

Figure 4.10 gives the two performance curves. Again, the team with learning does

a bit worse than the team with optimal GTP set during the first stage, recovers a lot

during the second stage, and does almost as well in the third stage.

iSince the number of robots and the number of sticks are the same for stage 1 and stage 3, it
is reasonable that the optimal GTP set for stage 1 is also (near-)optimal in stage 3. The lower
performance is due to the longer searching time in a larger arena.

45

0 800 1600 2400 3200 4000 4800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simulation time (min)

C
o

lla
b

o
ra

ti
o

n
 r

at
e

(1
/m

in
)

optimal GTP set
with learning

Figure 4.10: Performances under different numbers of robots. See Figure 4.8 for
details.

4.6 Discussion

In this chapter, we investigated learning issues under different configurations. Exper-

iments with local and global reinforcement showed that, in this case study, the two

kinds of reinforcement align well and have similar functionality in learning. Allowing

heterogeneity in learning leads to much better performance than forcing homogeneity

even if the same reinforcement (the global one) is used for every robot. Randomness

or noise in the reinforcement seems to prevent the learning algorithm from finding

good final choices of GTPs. However, the stochastic nature of the experiment decides

that even with global perception, the noise can not be 100% eliminated. Learning

has to accept the existence of the noise as a fact. To distinguish noise from envi-

ronmental changes (both can cause the reinforcement to change), time is needed for

accumulating evidence and thus the robots cannot promptly adapt to environmental

changes.

Finally we come to realize that a learning algorithm can only achieve a trade-off

between optimality and adaptability, but cannot maximize both. Under the condition

of partial perception and noisy, delayed reinforcement, better adaptability means

incomplete or even wrong information will be used in learning and thus leads to worse

46

optimality. Conversely, better optimality requires more time to collect information

and thus results in longer delay in catching up to the environmental change.

If we define adaptability as the time of convergence, optimality as the difference

between the learned solution and the optimal one, and environmental complexity as

a quantity estimating the effect of partial perception, delayed reward, and noise, we

may get an inequality like the Heisenberg’s uncertainty principle in physics:

Adaptability×Optimality ≥ Environmental Complexity. (4.1)

This is just a conjecture; we have not found any theoretical basis for it.

47

Chapter 5

Measuring Specialization

In many experiments we conducted, it was observed that the robots became special-

ized after learning. For example, Figure 3.5 shows the GTP curves of several robots

in two different runs using the ∆-method. All robots in a team started with the

same GTP. As the experiment progressed, their GTPs diversified and formed several

clusters in the GTP space.

These results, together with the inferior performance we got from global rein-

forcement and homogeneous teams (e.g., Figure 4.2), are consistent with the results

of systematic experiments reported in (Ijspeert et al. 2001) which show that, when

the number of robots is less than or equal to the number of sticks, specialization is

helpful. In addition to the stick pulling experiment, specialization (a situation some-

where between homogeneity and full heterogeneity) has proven to be effective for

solving several tasks (see for instance (Murciano et al. 1997; Campos et al. 2001)).

However, it is not enough to say “specialization emerges when learning is intro-

duced.” We want to know how “well” or to what degree the teammates become

specialized. Heterogeneity will also appear when the robots randomly update their

parameters, which we won’t call specialization. Hence we also want to convince our-

selves that solutions from learning are different from random ones.

This chapter presents our effort in quantifying specialization which is basically a

qualitative notation. The question we try to tackle with is: Giving a GTP set, what

is the degree of specialization in that set?

Consider again Figure 4.2 where six robots seem to form three clusters, with GTPs

48

around 50 sec, 100 sec, and 200 sec, respectively. The number of clusters in the GTP

space looks like a good indication of how much the robots have been specialized. If

there is only one cluster, i.e., all robots have almost the same GTP value, they do not

specialize; if there are several clusters, the robots are regarded specialized according

to different roles and localities.

However, finding the “right” number of clusters for a data set is often ill-posed

(Smyth 1996). Depending on different criteria, one number may or may not be better

than another number. In the following sections, two ad hoc algorithms are tested

with two different GTP spaces (linear and logarithmic spaces).

5.1 Greedy Algorithm

For the first try, we test a very simple algorithm (Algorithm 5.1) which utilizes the

fact that GTP is one-dimensional. The algorithm starts from the smallest GTP in

the set and tries to include in the same cluster as many GTPs as possible while still

maintaining the intra-cluster distance no more than a given parameter dmax. Corre-

sponding to ideas underneath the ∆-method and the %-method, the GTP set can be

directly fed into the algorithm, or its logarithm can be used. For the former case, we

say the linear GTP space is used, and for the latter case, we say the logarithmic GTP

space is used.

Algorithm 5.1 Greedy algorithm to find the number of clusters.

Input: A GTP set G, n = |G| is the number of robots.

Parameter: dmax is the maximum intra-cluster distance.

1. Sort G so that G = {g1, g2, . . . , gn} and gi ≤ gi+1 for 1 ≤ i < n.

2. m← 1, i← 1, j ← 1.

3. Increase j until j > n or gj − gi > dmax.

4. If j > n, return m as the number of clusters; otherwise, i← j, m← m + 1, go
to 3.

49

Figure 5.1 demonstrates the output of this greedy algorithm on four and six robots

using the mix-method, in both linear GTP space and logarithmic GTP space. Ap-

parently the number of clusters computed in the linear GTP space is higher than that

computed in the logarithmic GTP space. The ratio between the number of clusters

and the number of robots is close to 1, which is intuitively “too large” since by human

0 100 200 300 400 500 600 700 800
1

1.5

2

2.5

3

3.5

4

Simulation time (min)

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

(a) Linear with dmax = 100, 4 robots

0 100 200 300 400 500 600 700 800
1

1.5

2

2.5

3

3.5

4

Simulation time (min)

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

(b) Logarithm with dmax = 0.7, 4 robots

0 100 200 300 400 500 600 700 800
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Simulation time (min)

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

(c) Linear with dmax = 100, 6 robots

0 100 200 300 400 500 600 700 800
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Simulation time (min)

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

(d) Logarithm with dmax = 0.7, 6 robots

Figure 5.1: Number of clusters vs. simulation time (greedy algorithm). Robots are
initially homogeneous. The number of clusters calculated by the greedy algorithm is
averaged over 50 runs for each GTP from {5k}120

k=0. The mix-method is used as the
learning algorithm.

50

judgment from several runs (e.g., Figure 3.5) the ratio is roughly one half.i This is

mostly due to the fact that both the performance and the logarithm are less sensitive

to GTP changes when GTP is high.

While the choice between linear space and logarithmic space depends on the prob-

lem, we still have to choose a good intra-cluster distance dmax for this simple algo-

rithm. It turns out that even in the logarithmic space, the result of the algorithm

depends heavily on the choice of dmax (Figure 5.2) and a “good” choice, if there exists

such a choice for all numbers of robots, is very subjective.

2 3 4 5 6 7 8 9

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

d
max

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

(a) Logarithmic space, 4 robots

2 3 4 5 6 7 8 9

3

3.5

4

4.5

5

5.5

6

d
max

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

(b) Logarithmic space, 6 robots

Figure 5.2: Results of the greedy algorithm depend heavily on dmax. With larger
intra-cluster distance dmax, the algorithm gives smaller number of clusters.

5.2 Best-Fit Algorithm

In order to more objectively measure the degree of specialization, we try to find the

“best-fit” number of clusters using the expectation-maximization (E-M) algorithm

(Dempster et al. 1977) as a subroutine. Illustrated in Algorithm 5.2, the basic idea of

this algorithm is to try all possible numbers for clustering for a given GTP set. The

best partitioning is then selected based on a heuristic criterion: a good partitioning

iThe ratio calculated from results of the best-fit algorithm (we will soon come to that) is around
0.7.

51

Algorithm 5.2 Best-fit algorithm to find the number of clusters.

Input: A GTP set G, n = |G| is the number of robots.

1. For each m = 1..n, do

(a) Use E-M algorithm to cluster G into m clusters;

(b) Calculate the heuristic fitness fm of such clustering.

2. Return arg max
m

fm as the number of clusters.

of the GTP set should maximize the inter-cluster distances while minimizing the

intra-cluster distances. We mathematically translate this heuristic as the following

definition of fitness:

fm = 〈inter-cluster distance〉 − 〈intra-cluster distance〉 , (5.1)

where 〈·〉 denotes the average. As mentioned in previous sections, this is also an

ad hoc criterion.

Figure 5.3 shows the best-fit algorithm is more conservative in estimating the

number of clusters.

5.3 Sub-linearity

We apply the best-fit algorithm (Algorithm 5.2) to GTP sets obtained from the mix-

method learning algorithm with local reinforcement. Figure 5.4 shows the average

number of clusters after learning vs. total number of robots. With more and more

robots, it is reasonable that the number of clusters also increases. However, if we

normalize this number by the total number of robots, we obtain a clear saturation

of the relative number of clusters per robot. Indeed, when the number of robots

exceeds that of sticks, the need for specialization decreases and so does the degree of

specialization.

As in Section 4.1, we also investigated heterogeneous teams combined with global

52

0 100 200 300 400 500 600 700 800
1

1.5

2

2.5

3

3.5

4

Simulation time (min)

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

(a) Logarithm space, 4 robots

0 100 200 300 400 500 600 700 800
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Simulation time (min)

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

(b) Logarithm space, 6 robots

Figure 5.3: Number of clusters vs. simulation time (best-fit algorithm). Robots are
initially homogeneous. The number of clusters calculated by the best-fit algorithm is
averaged over 50 runs for each GTP from {5k}120

k=0. The mix-method is used as the
learning algorithm.

2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of robots

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

local, absolute
local, relative
global, absolute
global, relative

Figure 5.4: Number of clusters after learning under different reinforcement. The
number of clusters (absolute value) and that per robot (relative value) are calculated
by the best-fit algorithm.

53

reinforcement. Once again, we do not obtain any significant difference in the degree

of specialization as a function of the reinforcement type.

5.4 Random Test

As a measure of specialization, the best-fit algorithm itself as well as the definition of

the fitness (5.1) is quite arbitrary. We need to be convinced that this kind of measure

indeed reveals something about the specialization resulting from learning. We decide

to challenge the best-fit algorithm with GTP sets generated randomly instead of from

learning.

Figure 5.5 clearly shows that the best-fit algorithm could distinguish the random

input from the input after learning. When fed with randomly generated GTP sets, the

algorithm gives higher output, no matter whether the linear or logarithmic space is

used, indicating more scattered GTPs. Even though it results in robots with different

GTPs, learning is likely to group several robots together, keeping the specialization

2 3 4 5 6
0

1

2

3

4

5

6

Number of robots

A
ve

ra
g

e
n

u
m

b
er

 o
f

cl
u

st
er

s

logarithm, random
logarithm, learn
linear, random
linear, learn

Figure 5.5: Number of clusters after learning and with random GTP sets. A random
GTP set consists of GTPs randomly (uniformly) generated within [5, 1000]. For each
team size, 10000 random sets are tested to get the error bars. Here the mix-method is
used for learning with local reinforcement. 100 runs for each initial GTP in {5k}120k=0

are simulated. Obviously learning groups robots together while still maintaining some
degree of specialization.

54

from full heterogeneity.

5.5 Discussion

The E-M algorithm in the best-fit algorithm could be replaced by any other clustering

algorithm, such as ISODATA (Ball and Hall 1967) or k-means clustering (Moody

and Darken 1989). The complexity of the best-fit algorithm depends on that of the

underlying clustering algorithm and n, the number of the robots. Since every number

between 1 and n will be tried as the number of clusters, the algorithm is not suitable

for a large number of robots.

When applied to hierarchical clustering, deterministic annealing can find the “nat-

ural” number of clusters for any given β, which is a parameter related to the “tem-

perature” (Rose 1991; Rose 1998). This is quite similar to what we want to do in

this chapter. However, β is a free parameter which is hard to decide, causing similar

problems as dmax in the greedy algorithm.

Clustering is similar to the mixture model (McLachlan and Basford 1987) in which

samples of the mixture of several distributions with unknown parameters are given

and the goal is to find the parameters. The problem of finding the “right” number

of clusters (distributions) also exists when the number of underlying distributions is

unknown.

In this case study, we may also adopt a non-integer as the number of clusters. It

is reasonable, when some GTP sets are equally like to be two and three clusters, to

assign the real number 2.5 to the “number of clusters,” which is used as the degree

of specialization. One fast (but untested) way to introduce real number of clusters

in the best-fit algorithm is to return the weighted sum of m with the fitness as the

weight.

55

Chapter 6

Conclusion

With the help of a microscopic probabilistic model, we investigated several issues on

distributed learning in swarm systems with a concrete case study in collective robotics

(the stick pulling experiment).

We tested several learning algorithms with local or global reinforcement and com-

pared the learned performances with optimal ones obtained from the systematic search

(with early stopping). While learning provides better solutions than random or naive

approaches, it can only achieve near-optimal performance. Among algorithms we

tested, the adaptive line search which directly searches for optimal parameters works

much better than Q-learning which is based on reward estimation.

Specialization has consistently been observed after learning, though the teams

were initially homogeneous and we never explicitly rewarded diversity. We found that

learning policies which allowed teammates to specialize found an adequate diversity

of the team and in general achieved similar or better performances than policies which

forced homogeneity. Two ad hoc measures were designed to quantify the degree of

specialization. Results showed that learning led to teams with specialization some-

where in the middle of homogeneity and total randomness. We also illustrated that

the need for specialization decayed with more and more robots.

For a learning algorithm, optimality indicates how good the learned solution is

and adaptability reflects how quick the team adapts to environmental changes. We

proposed the problem of trade-off between optimality and adaptability. Several ex-

periments were carried out in order to understand the effect of noise and time delay on

56

learning. We argued that a learning algorithm could only achieve a trade-off between

optimality and adaptability, but could not maximize both.

Finally, in this specific case study, the emergent specialization and achieved team

performances appear to be independent of the locality or globality of the reinforcement

signal, probably due to the high alignment between both forms of reinforcement.

Although we have not tested our learning algorithms using real robots or realistic

simulations, we believe that their validity is not limited to abstract agents since

the simulation model is quite faithful in simulating experiments with real robots.

Because there was no direct communication between robots, even though we only did

experiments with two to six robots, our learning algorithms and some conclusions

should still be valid to system with thousands of agents.

6.1 Future Directions

In the end of the thesis, let us consider future directions for research in both theory

and application fields.

• We would like to further study the optimality and adaptability issue. For-

malizing our conjecture of inequality (4.1) in some simple cases may still be a

difficult job. We need to investigate quantitatively several variables, such as

convergence time and learned solutions, under different learning strategies and

reinforcement, and try to set up relationships between them.

• Some work on Internet congestion control (Low and Lapsley 1999; Low et al.

2002) established a model where global optimization can be solved by several

local optimization problems. Though at an initial glance their method can not

be applied to the distributed learning in swarm systems due to different system

settings, further investigation is still needed.

• It would be interesting to evaluate and validate the same learning policies with

real robots in order to investigate whether the solutions learned at the micro-

scopic model level are also effective when implemented on real robots.

57

• As a way to reduce locality and share experiences, parameters, and policies,

local communication helps to solve problems in distributed learning such as

the credit assignment problem (Matarić 1998). We want to investigate differ-

ent types of local communications and their effect on the team performance

and specialization. Note that the geometric information (such as positions of

robots) has to be supplied to microscopic models in order to simulate the local

communication.

58

Bibliography

[Ball and Hall 1967] G. Ball and D. Hall. A clustering technique for summarizing

multivariate data. Behavioral Science, 12:153–155, 1967.

[Bonabeau and Meyer 2001] E. Bonabeau and C. Meyer. Swarm intelligence: A

whole new way to think about business. Harvard Business Review, 79(5):106–

114, 2001.

[Bonabeau et al. 1999] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelli-

gence: From Natural to Artificial Systems. Oxford University Press, New York,

1999.

[Bonabeau et al. 2000] E. Bonabeau, M. Dorigo, and G. Theraulaz. Inspiration for

optimization from social insect behaviour. Nature, 406:39–42, 2000.

[Campos et al. 2001] M. Campos, E. Bonabeau, G. Théraulaz, and J.-L. Deneubourg.

Dynamic scheduling and division of labor in social insects. Adaptive Behavior,

8(2):83–94, 2001.

[Dempster et al. 1977] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum

likelihood from incomplete data via the EM algorithm. Journal of the Royal

Statistical Society, B 39(1):1–38, 1977.

[Dorigo and Gambardella 1997] M. Dorigo and L. M. Gambardella. Ant colony sys-

tem: A cooperative learning approach to the traveling salesman problem. IEEE

Transactions on Evolutionary Computation, 1(1):53–66, 1997.

[Ijspeert et al. 2001] A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella.

Collaboration through the exploitation of local interactions in autonomous collec-

59

tive robotics: The stick pulling experiment. Autonomous Robots, 11(2):149–171,

2001.

[Kaelbling et al. 1996] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforce-

ment learning: A survey. Journal of Artificial Intelligence Research, 4:237–285,

1996.

[Kelly et al. 1997] I. D. Kelly, D. A. Keating, and K. Warwick. Mutual learning

by autonomous mobile robots. In M. Beneder, ed., Proceedings of the First

Workshop on Teleoperation and Robotics, Applications in Science and Arts, pp.

103–115. R. Oldenbourg, 1997.

[Lerman et al. 2001] K. Lerman, A. Galstyan, A. Martinoli, and A. J. Ijspeert. A

macroscopic analytical model of collaboration in distributed robotic systems.

Artificial Life, 7(4):375–393, 2001.

[Low and Lapsley 1999] S. H. Low and D. E. Lapsley. Optimization flow control,

I: Basic algorithm and convergence. IEEE/ACM Transactions on Networking,

7(6):861–875, 1999.

[Low et al. 2002] S. H. Low, F. Paganini, and J. C. Doyle. Internet congestion control.

IEEE Control Systems Magazine, 22(1):28–43, 2002.

[Martinoli and Mondada 1995] A. Martinoli and F. Mondada. Collective and co-

operative group behaviours: Biologically inspired experiments in robotics. In

O. Khatib and J. K. Salisbury, eds., Proceedings of the Fourth International

Symposium on Experimental Robotics (ISER’95), 1995, vol. 223 of Lecture Notes

in Control and Information Sciences, pp. 3–10. Springer-Verlag, Berlin, 1997.

[Martinoli et al. 1999a] A. Martinoli, A. J. Ijspeert, and L. M. Gambardella. A prob-

abilistic model for understanding and comparing collective aggregation mecha-

nisms. In D. Floreano, J.-D. Nicoud, and F. Mondada, eds., Advances in Ar-

tificial Life, vol. 1674 of Lecture Notes in Artificial Intelligence, pp. 575–584.

Springer-Verlag, Berlin, 1999.

60

[Martinoli et al. 1999b] A. Martinoli, A. J. Ijspeert, and F. Mondada. Understanding

collective aggregation mechanisms: From probabilistic modelling to experiments

with real robots. Robotics and Autonomous Systems, 29(1):51–63, 1999.

[Matarić 1998] M. J. Matarić. Using communication to reduce locality in distributed

multi-agent learning. Journal of Experimental and Theoretical Artificial Intelli-

gence, 10(3):357–369, 1998.

[McLachlan and Basford 1987] G. J. McLachlan and K. E. Basford. Mixture Models:

Inference and Applications to Clustering. Marcel Dekker, New York, 1987.

[Michel 1998] O. Michel. Webots: Symbiosis between virtual and real mobile robots.

In J.-C. Heudin, ed., Virtual Worlds, vol. 1434 of Lecture Notes in Artificial

Intelligence, pp. 254–263. Springer-Verlag, Berlin, 1998.

[Moody and Darken 1989] J. Moody and C. J. Darken. Fast learning in networks of

locally-tuned processing units. Neural Computation, 1(2):281–294, 1989.

[Murciano et al. 1997] A. Murciano, J. del R. Millán, and J. Zamora. Specialization

in multi-agent systems through learning. Biological Cybernetics, 76(5):375–382,

1997.

[Parker and Touzet 2000] L. E. Parker and C. Touzet. Multi-robot learning in a

cooperative observation task. In L. E. Parker, G. Bekey, and J. Barhen, eds.,

Distributed Autonomous Robotic Systems 4, pp. 391–401. Springer-Verlag, Berlin,

2000.

[Parrish and Hamner 1997] J. K. Parrish and W. M. Hamner, eds. Animal Groups

in Three Dimensions. Cambridge University Press, New York, 1997.

[Rose 1991] K. Rose. Deterministic Annealing, Clustering, And Optimization. Ph.D.

thesis, California Institute of Technology, Pasadena, California, 1991.

61

[Rose 1998] K. Rose. Deterministic annealing for clustering, compression, classifica-

tion, regression, and related optimization problems. Proceedings of the IEEE,

86(11):2210–2239, 1998.

[Salustowicz et al. 1998] R. P. Salustowicz, M. A. Wiering, and J. Schmidhuber.

Learning team strategies: Soccer case studies. Machine Learning, 33(2):263–

282, 1998.

[Smyth 1996] P. Smyth. Clustering using Monte Carlo cross-validation. In

E. Simoudis, J. Han, and U. M. Fayyad, eds., Proceedings of the Second In-

ternational Conference on Knowledge Discovery and Data Mining (KDD-96),

pp. 126–133. AAAI Press, 1996.

[Versino and Gambardella 1997] C. Versino and L. M. Gambardella. Learning real

team solutions. In G. Weiß, ed., Distributed Artificial Intelligence Meets Machine

Learning: Learning in Multi-Agent Environments, vol. 1221 of Lecture Notes in

Artificial Intelligence, pp. 40–61. Springer-Verlag, Berlin, 1997.

[Watkins and Dayan 1992] C. J. C. H. Watkins and P. Dayan. Technical note: Q-

learning. Machine Learning, 8:279–292, 1992.

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Swarm Systems
	1.2 Distributed Learning
	1.3 Overview

	2 The Stick Pulling Experiment
	2.1 Experimental Setup
	2.2 Microscopic and Macroscopic Models
	2.2.1 Handling Stochastic Events

	2.3 Systematic Search with Early Stopping
	2.3.1 Early Stopping
	2.3.2 Probability of Wrong Rejection
	2.3.3 Optimal GTP Sets

	3 Learning Methods
	3.1 Memoryless Adaptation
	3.2 Adaptive Line Search
	3.2.1 -method
	3.2.2 %-method
	3.2.3 Mix-method

	3.3 Q-Learning
	3.3.1 Settings
	3.3.2 Results

	3.4 Discussion

	4 Towards Optimal Performances
	4.1 Local and Global Reinforcement
	4.2 Evaluation Time
	4.3 Precomputed Performance
	4.4 Training and Test Phases
	4.5 Multi-stage Test
	4.5.1 Changing Stick Density
	4.5.2 Adding/Removing Robots

	4.6 Discussion

	5 Measuring Specialization
	5.1 Greedy Algorithm
	5.2 Best-Fit Algorithm
	5.3 Sub-linearity
	5.4 Random Test
	5.5 Discussion

	6 Conclusion
	6.1 Future Directions

	Bibliography

