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Abstract

A multiclass classification problem can be re-
duced to a collection of binary problems with
the aid of a coding matrix. The quality of the
final solution, which is an ensemble of base
classifiers learned on the binary problems, is
affected by both the performance of the base
learner and the error-correcting ability of the
coding matrix. A coding matrix with strong
error-correcting ability may not be overall op-
timal if the binary problems are too hard for
the base learner. Thus a trade-off between
error-correcting and base learning should be
sought. In this paper, we propose a new mul-
ticlass boosting algorithm that modifies the
coding matrix according to the learning abil-
ity of the base learner. We show experimen-
tally that our algorithm is very efficient in op-
timizing the multiclass margin cost, and out-
performs existing multiclass algorithms such
as AdaBoost.ECC and one-vs-one. The im-
provement is especially significant when the
base learner is not very powerful.

1. Introduction

Many efforts of the machine learning research have
been focused on binary classification problems. For a
multiclass classification problem with more than two
different class labels, it is possible to reformulate it as
a collection of binary problems. The most popular ap-
proaches are one-vs-all where each class is compared
against all others, and one-vs-one where all pairs of
classes are compared (Allwein et al., 2000).

Dietterich and Bakiri (1995) and Allwein et al. (2000)
unified and generalized most such approaches with
error-correcting codes. In their framework, an error-
correcting coding matrix is first given, with each row
associated with a class from the multiclass problem.
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Binary classifiers (also called base classifiers) are then
learned, one for each column of the matrix, on training
examples that are relabeled according to the column.
Given an unseen input, the vector formed by the out-
puts of the base classifiers is compared with every row
of the coding matrix, and the class associated with the
“closest” row is predicted as the class of the input.

The coding matrix is usually chosen for strong error-
correcting ability (Dietterich & Bakiri, 1995). How-
ever, strong error-correcting ability alone does not
guarantee good learning performance—one important
assumption for normal error-correcting codes that er-
rors are uncorrelated may not hold for the base classi-
fiers (Guruswami & Sahai, 1999). Thus the choice of
the coding matrix has to balance the needs of strong
error-correction and uncorrelated classifier errors, and
is usually problem-dependent (Allwein et al., 2000).

Multiclass boosting algorithms based on error-
correcting codes (Schapire, 1997; Guruswami & Sa-
hai, 1999) tackle the error correlation among the base
classifiers by deliberately reweighting the training ex-
amples. They usually start off with an empty cod-
ing matrix and all classes indistinguishable from oth-
ers, and then iteratively append columns to the ma-
trix and train base classifiers so that the confusion be-
tween classes can be gradually reduced. The examples
are reweighted in a fashion similar to the weighting
scheme in the binary AdaBoost (Freund & Schapire,
1996), aiming at uncorrelated errors. In order to re-
duce the confusion between classes as fast as possible,
in each iteration, a max-cut problem can be solved so
that the “optimal” matrix column is obtained.

It is however common that researchers usually do not
pursue the “optimal” coding matrix when applying the
multiclass boosting algorithms. Instead, some choose
the matrix columns at random (Schapire, 1997; Gu-
ruswami & Sahai, 1999).! Although the fact of max-
cut being NP-complete prevents an efficient solution,
this is not exactly the reason for researchers not us-
ing it; after all, many multiclass classification prob-

'We actually did not find out how Guruswami and Sahai
(1999) chose the columns.
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lems have less than ten classes, and even some simple
heuristic methods can do better in reducing the con-
fusion than a random method. It is mostly because
that, combined with the boosting algorithm, a max-
cut or heuristic method does not improve over a ran-

dom one (Schapire, 1997).

In this paper, we discuss why max-cut does not work
well with existing multiclass boosting algorithms, and
propose a general remedy which leads to a new boost-
ing algorithm. We first discuss in Section 2 how Ada-
Boost. ECC, a typical multiclass boosting algorithm,
can be explained as gradient descent on a margin cost
function (Sun et al., 2005). The trade-off between the
error-correcting ability and the base learning perfor-
mance is then explained. We propose in Section 3 the
new algorithm to achieve a better trade-off by modify-
ing the coding matrix according to the learning ability
of the base learner. In Section 4, our algorithm is
tested on real-world data sets with four base learners
of various degrees of complexity, and the results are
quite promising. Finally we conclude in Section 5.

2. AdaBoost.ECC and Multiclass Cost

Consider a K-class classification problem where the
class labels are 1, 2, ..., K. The training set contains
N examples, {(x,, yn)}ﬁ[:l, where x,, is the input and
yn € {1,2,...,K}. To reduce the multiclass problem
to a collection of T binary problems, we use a coding
matrix M € {—1,0,+1}**" (Allwein et al., 2000).
A base classifier f; is learned on the relabeled exam-
ples {(xn, M(yn,t)) : M(yn,t) # 0} based on the ¢-th
column of M, and classes that are relabeled as 0 are
omitted. The columns of M are also called partitions
(or partial partitions if there are 0’s) since they define
the way the original examples are split.

Given an input x, the ensemble output F(x) =
(f1(x),..., fr(x)) is computed, and the Hamming de-
coding? (Allwein et al., 2000) is used to predict the
label of x. In the most general settings, there is a co-
efficient o, for every base classifier f;. The Hamming
distance between F(x) and the k-th row M(k) is

L= Mk ()

A (M(E), P(x)) = 3 o=

t=1

Label y is predicted if M(y) has the smallest Hamming
distance to F(x).

To correctly classify an example (x,y), we want
A (M(y), F(x)) to be smaller than A (M(k), F(x)) for

*We consider base classifiers with outputs in {—1,+1}
(see experiment settings in Section 4). Thus a loss-based
decoding is equivalent to the Hamming decoding.

Algorithm 1. AdaBoost. ECC (Guruswami & Sahai, 1999)

Input: A training set {(xn,ys)}"_,; number of epochs T
1: Initialize Dy (n, k) = 1; F = (0,0,...,0), i.e., f =0

2: fort=1to T do

3:  Choose the t-th column M(-,t) € {—1,+1}*

Ur = 27]:’:1 Z§:1KDt (?7 k)[M(k, t) # M(yn, t)]
Di(n) = Uy - 32, De(n, k)[M(k, ) # M(yn, t)]
Train f; on {(Xn, M(yn,t))} with distribution Dy
e = 2 py De(n)[fe(xn) # M(yn, t)]

o = 3In(e; ' — 1)

9: Dt+1(n, k) = D, (n,k) e SE M (yn,t) =M (k,t)] ft (xn)
10: end for

11: return the coding matrix M, the ensemble F and o

any k # y. Naturally, we may define the margin of the
example (x,y) for class k as the difference between
these two distances,

pr (%, y) = A (M(K), F(x)) — A (M(y),F(x)). (1)

A learning algorithm should pick a coding matrix M,
T base classifiers f;’s, and their coefficients «’s, such
that the margins of the training examples are as large
as possible.

AdaBoost.ECC (Guruswami & Sahai, 1999) is one
such algorithm with a boosting style (Algorithm 1).3
It starts from an empty coding matrix, and iteratively
generates columns and base classifiers. Just as Ada-
Boost (Freund & Schapire, 1996) optimizes some cost
as gradient descent in the function space (Mason et al.,
2000), AdaBoost.ECC optimizes an exponential cost
function based on the margins (Sun et al., 2005)*

N
C(F) = Z Z e~ Pr(Xnsyn) (2)

n=1k#y,

We will briefly show how AdaBoost.ECC optimizes
this cost in the ¢-th iteration. Using the definitions
in Algorithm 1, we notice that by induction, F =
(fl, co [0, ) and bt+1(n, k) = e~ Pe(Xnyn) Qo

CF) = Zﬁ;l Zszl Dyy1(n, k) — N for Dyyi(n,yn) is
always 1. The negative gradient at a; = 0 is thus

N K

~9C(F) _ dDy11(n, k)
aat a;=0 7; l; 60ét at=0
N K
=50 Dufn ) | MM g
n=1k=1

$We only discuss the symmetric AdaBoost.ECC in this
paper; nevertheless, our improvement can also be against
the asymmetric AdaBoost.ECC.

4Although Sun et al. (2005) used different definitions
for the ensemble output and the distance measure, their
cost function is equivalent to ours.
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The last equality is due to step 9 in Algorithm 1. Since
M(k,t) in AdaBoost.ECC can only be —1 or +1, the
negative gradient can further be reduced to

N
U > De(n)M(yn, t) fe(xn) = Up(1 = 22,).  (4)
n=1

AdaBoost.ECC tries to maximize this negative gra-
dient and then picks ay to exactly minimize the cost
along the negative gradient.

Two steps in Algorithm 1 directly affect the maximiza-
tion of the negative gradient (4). One is step 3 where
the ¢-th column is picked. The ¢-th column decides the
value of Uy, which indicates the error-correcting abil-
ity of the column. Roughly speaking, the larger Uy is,
the stronger the error-correcting ability is, the faster
the cost is reduced, and the smaller the training error
bound is (Guruswami & Sahai, 1999, Theorem 2). The
other is step 6, where the base classifier is learned. It is
also obvious that both the cost and the training error
bound can be smaller if the base learner can achieve
a smaller ;. It seems that in order for a better cost
optimization, we should both maximize U; and mini-
mize €.

A max-cut method has been proposed to obtain
the “optimal” partition that maximizes U; (Schapire,
1997). However, it appears that researchers prefer a
somewhat random method for picking the partitions,
e.g., rand-half that randomly picks half of the classes
for label —1 and the other half for +1 (Schapire, 1997;
Sun et al., 2005). This is actually with a reason: in
long run, using the “optimal” partitions from max-cut
is usually worse than using the random partitions, in
both training and testing.

Let’s look at a toy problem where points in a rectan-
gle are assorted into seven tangram pieces (Figure 1).
To compare the two column-picking methods, rand-half
and max-cut, we ran AdaBoost.ECC on 500 random
examples. Our base classifiers are perceptrons, which
separate points with a straight line. It turned out that
rand-half was more efficient in reducing the cost (Fig-

Figure 1. The tangram with seven pieces

10°

—— AdaBoost.ECC (max-cut)
— AdaBoost.ECC (rand-half)

10}

Training cost (normalized)

10"

0 10 20 30 40 50
Number of iterations

Figure 2. AdaBoost.ECC cost in the tangram experiment
(normalized by N(K — 1))

(a) 48 times, a; = 0.332 (b) 40 times, & = 0.335

(c) 9 times, a; = 0.813

(d) 11 times, & = 0.619

Figure 3. Dominating partitions in the tangram experi-
ment: (a,b) with max-cut; (¢,d) with rand-half

ure 2). And as a matter of fact, the test error in this
experiment was also smaller with rand-half.

Why did max-cut, which maximized U; in every it-
eration, have a worse performance in optimizing the
cost? One probable reason is that the binary prob-
lems from max-cut are usually much “harder” for the
base learner. To see this in the tangram experiment,
we counted how many times a partition was picked
during the AdaBoost.ECC runs, and summed up for
this partition the coefficients oy, which were decided
from the weighted error €; of the base classifiers trained
on the partition. The sum indicates how much the
partition influences the ensemble, and the average co-
efficient (denoted as &) implies how hard the binary
problems are to the base learner. Figure 3 gives the
two dominating partitions with the largest coefficient
sums out of the 200 AdaBoost.ECC iterations. Obvi-
ously AdaBoost.ECC with max-cut focused on harder
binary problems, while AdaBoost.ECC with rand-half
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was happy with easier problems. Since harder prob-
lems deteriorated the learning of base classifiers, the
overall cost reduction was worse for max-cut. Note
that this situation might be more prominent for later
iterations since the boosting nature of AdaBoost.ECC
keeps increasing the hardness of the binary problems.

It is thus important to find a good trade-off between
maximizing U; and minimizing €;. In next section, we
will discuss a remedy based on repartitioning.

3. AdaBoost. ECC with Repartitioning

We have seen from the tangram experiment that dif-
ferent partitioning methods may generate binary prob-
lems of various hardness levels. How hard a problem
is depends on how the relabeled examples distribute
in the feature space and how well the base learner can
handle such a distribution. For example, with percep-
trons as the base classifiers, discriminating tangram
classes 1 and 3 from 2 and 4 (Figure 3(a)) is much
harder than discriminating 1 and 2 from 3 and 4 (Fig-
ure 3(c)). Thus in order to achieve a good trade-off
between maximizing U; and minimizing &4, we should
also consider the discriminating ability of the base
learner when picking the partitions.

How do we know whether a partition can be well han-
dled by the base learner? We usually do not know
unless the base learner has been tried on the parti-
tion. The learned classifier has its own preference on
how the examples should be relabeled, and thus hints
on what partitions better suit the base learner. We
can then repartition the examples based on such in-
formation so as to reduce the cost even more.

Assume in the ¢-th iteration, a base classifier f; has
been learned. To find a new and better partition for
this fi, we try to maximize the negative gradient (3),

‘Dt(n= k) [M(ymt) - M(k7t)] ft(xﬂ)7

which can be reorganized as

K
max k,t)YM(k,t),
g D2 b MR

with p(k,t) defined as p(k,t) =

K
Z ZDt(nvé)ft(Xn) -

n: yn==~k =1 n

Dy(n, k) fe(xn). (5)

M=

1

Since M(k,t) € {—1,+1}, it is clear that the negative
gradient is maximized when M(k,t) = sign [u(k, t)].

The repartitioning can also be justified intuitively from
a single example point of view. On one side, the contri-
bution of example (X,,, Y ) t0 M(yp,t) = sign [t(yn, t)]
is X«
> Di(n,0) = Di(n,yn) | fe(n).
=1

Note that with F = (f1,..., fi—1,0,...), Dy(i, k) is
e~ Pr(xnyn) - Qo the summation > ity Dy(n,0) actu-
ally tells, without the current f;, how close the exam-
ple is to classes other than its own class y,,. The closer
it is to other classes, the larger the summation is, and
thus the more likely M(yy,t) would be to have the
same sign as fi(x;), which would in consequence in-
crease some of the margins of this example after f; is
included. On the other side, the contribution of the
example to M(k,t) where k # y, is —Dy(n, k) fi(Xn).
With similar reasoning, this implies that if the exam-
ple is close to class k, M(k,t) would be requested to
have the opposite sign as f;(x,), which also would in-
crease the margin py.

The repartitioning of M (-, ¢) and the learning of f; can
be carried out alternatively. For example, we can start
from a partition, train a base classifier on it, reparti-
tion the classes, and then train a new base classifier
on the new partition. If the base learner always mini-
mizes the weighted training error, the negative gradi-
ent would always increase until convergence. In prac-
tice, when the base learning is expensive, we may only
repeat the repartitioning and learning cycle for several
fixed steps.

Algorithm 2 depicts the new multiclass boosting al-
gorithm, AdaBoost.ERP, i.e., AdaBoost.ECC with
repartitioning. The changes from AdaBoost.ECC are
underlined for better reading. Note that we also allow

Algorithm 2. AdaBoost.ERP (ECC with repartitioning)

Input: A training set {(Xn,yn)}"_,; number of epochs T

n=1’
: Initialize Dy (n, k) = 1; F = (0,0,...,0), i.e., fi =0
: fort=1to 7T do
Choose an initial column M(-,t) € {—1, 0, —|—1}K
repeat {Alternate learning and re-partitioning}

1
2
3
4
5: U =N SK | Di(n, k) [M(k, t)M(yn, t) < 0]
6
7
8

Di(n) = U35, De(n, k) [M(k, ) M(yn, t) < 0]
Train fi on {(xn, M(yn,t))} with distribution Dy
M(k,t) = sign [p(k,t)] {See (5) for details}

9: until convergence or some specified steps

10:  Update U; and Dy with the current M(+, ¢), as above

11: Et = ij:l Dt(n)[[ft(xn) 75 M(yn7t)]]

122 oy =3In(e; ' — 1)

13: Dt+1(n, k)= ﬁt(n, k) - e~ 2 Myn,t)=M(k,0)]f (xn)
14: end for

15: return the coding matrix M, the ensemble F and o
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the initial column M(-,¢) to have 0’s (step 3). Since
a partial partition will be adjusted in the repartition-
ing step to a full one, the coefficient a; can still be
decided exactly. The benefit of having a partial parti-
tion is that only part of the examples are used for the
initial base learning (step 7). This allows, for example,
to first focus the learning on local structures of just a
pair of classes and then extend to the full partition
based on the knowledge learned from the local struc-
tures. Besides, the base learning is also faster with less
examples.

The repartitioning takes 2N K arithmetic operations,
which is usually much cheaper than the base learning.

4. Experiments

We tested AdaBoost.ERP experimentally on ten mul-
ticlass benchmark problems (Table 1) from the UCI
machine learning repository (Hettich et al., 1998) and
the StatLog project (Michie et al., 1994). For problems
with both training and test sets, experiments were run
100 times and the results were averaged. Otherwise,
a 10-fold cross-validation was repeated 10 times for a
total of 100 runs. When there was randomness in the
learning algorithm and/or cross-validation was used,
the standard error over 100 runs was also computed.
For each run, the training part of the examples were
linearly scaled to [—1,1], and then the test examples
were adjusted accordingly.

We tried different ways to set the initial partitions and
different schedules to repartition. In the results re-
ported here, the initial partial partitions always con-
tained two classes selected from all the K classes, ran-
domly (denoted by rand-2) or to maximize the corre-
sponding U; (denoted by max-2). We use a string of
“L” and “R” to represent the schedule of base learn-
ing and repartitioning in a boosting iteration. For ex-
ample, “LRL” means that a base classifier was first
learned on the two classes in the partial partition, then
the partition was adjusted, and finally a new base clas-
sifier was trained on the adjusted full partition.

Table 1. Multiclass problems

dataset #train | #test | K | #attribute
dna 2000 1186 3 180
glass 214 - 6 9
iris 150 - 3 4
letter 16000 4000 | 26 16
pendigits 7494 3498 | 10 16
satimage 4435 2000 6 36
segment 2310 - 7 18
vehicle 846 - 4 18
vowel 528 462 | 11 10
wine 178 - 3 13

We used four base learners of various degrees of com-
plexity. The first one is the decision stump, also known
as FINDATTRTEST (Schapire, 1997). The second one
is the perceptron with a learning algorithm suitable
for boosting (Li, 2005). The third one is a binary
AdaBoost (Freund & Schapire, 1996) that aggregates
up to 50 decision stumps. The last one is the soft-
margin support vector machine with the perceptron
kernel (SVM-perceptron) (Lin & Li, 2005).°

We compared our algorithm with AdaBoost. ECC with
max-cut or rand-half. When the decision stump was
used as the base learner, each algorithm was run for
500 iterations; for other more powerful base learners,
the number of iterations was 200. However, for one ex-
ception, the letter data with 26 classes, we ran 1000 it-
erations with the decision stump and 500 iterations
with other base learners. Note also that the exact
max-cut for 26 classes is time-consuming so instead we
used a simple greedy approximation for the letter data
to approximately maximize U; for AdaBoost. ECC. We
also compared with one-vs-one and one-vs-all using the
same base learners. For space consideration, we only
list the lower test errors of these two algorithms.

Table 2 presents the test errors with the decision
stump as the base learner, the lowest errors in bold.
With this simple base learner, one-vs-one and one-vs-
all got quite large errors since they are limited in the
number of base classifiers. We can also see that most
of the time AdaBoost.ECC with max-cut was worse
than AdaBoost. ECC with rand-half. This verified our
analysis that, when the base learner is not powerful
enough, problems from max-cut would be too hard and
the overall learning performance would instead be de-
teriorated (see also Figure 4). With the help of reparti-
tioning, AdaBoost.ERP achieved better test errors for
most of the data sets, and for some cases it was sub-
stantially better. For better illustration, we also show
in Figure 4 the training cost and the test error curves
for two large data sets, letter and pendigits. With the
same number of base classifiers, AdaBoost.ERP almost
always achieved a much lower training cost and a lower
test error. More steps of the repartitioning and base
learning further improved the learning, although the
marginal improvement was small.

SFor the perceptron kernel, only the regularization pa-
rameter C needs to be tuned. For problems with both
training and test sets, a cross-validation with 30% of the
training set kept for validation was repeated 10 times. The
best C € {273, 1,23,25, 29} was then used in the full train-
ing and testing. The whole process was repeated 20 time.
For problems with no test sets, the best results of the 10-
fold cross-validation averaged over 10 times were reported.
To support the weighted data, we scale C for each example
proportional to its sample weight (Vapnik, 1999).
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Table 2. Test errors (%) of multiclass algorithms with the decision stump as the base learner

one-vs-one AdaBoost.ECC AdaBoost.ERP (max-2) AdaBoost.ERP (rand-2)
dataset one-vs-all max-cut rand-half LRL LRLR LRL LRLR
dna 30.61 5.90 5.92 +0.02 6.41 5.56 5.78 £ 0.03 5.88 +0.03
glass 34.10 £ 1.11 27.43+0.95 26.67 +0.92 26.05+0.85 25.57+0.89 | 25.29 +£0.85 25.624+0.85
iris 7.60 + 0.55 7.67 +0.61 6.60 4+ 0.60 6.73 £ 0.59 6.80 £+ 0.59 7.53 +1.10 6.60 - 0.59
letter 39.42 32.79+£0.19 22.00 +0.04 21.05 17.73 18.52 £0.03 17.84 +0.02
pendigits | 23.67 9.06 5.94 + 0.02 6.03 5.80 5.65 + 0.03 5.55 +0.02
satimage | 19.15 14.50 12.57 £ 0.04 12.10 12.45 12.59 £0.04 12.58 +0.04
segment 12.24 £0.21 3.28+£0.12 1.94 £+ 0.09 2.07 +0.09 1.97 £+ 0.09 1.90 £0.09 1.95 4+ 0.09
vehicle 43.31 £0.48 26.93 +0.40 22.134+0.38 2328 +£0.38 22.85+0.39 | 22.08+£0.39 22.40+0.41
vowel 57.14 59.74 57.98 + 0.16 55.63 59.09 57.40 +£0.15 57.65 +0.13
wine 15.33 £0.71 2.00 +0.32 3.17+£0.39 2.33 £0.36 2.72 £0.39 2.83 £0.37 2.78 £0.37
10° ‘ ‘
AdaBoost.ECC (max—cut)
AdaBoost.ECC (rand-half)
e — — — AdaBoost.ERP (max-2, LRL)
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Figure 4. Multiclass boosting with the decision stump (AdaBoost.ERP (max-2, LRLR) is very close to that with rand-2)

With the perceptron as a more powerful base learner,
test errors on some data sets were greatly reduced (Ta-
bles 3, with less number of iterations compared to that
with the decision stump). Again repartitioning im-
proved the learning performance on most of the data

sets.

Figure 5 shows the training cost and the test

error curves for the letter data set. Observations are
similar to those of Figure 4, but the improvement was
not as dramatic as with the decision stump.

The binary AdaBoost was the only weak learner with
which one-vs-one actually had comparable or even bet-
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Table 3. Test errors (%) of multiclass algorithms with the perceptron as the base learner

one-vs-one AdaBoost. ECC AdaBoost. ERP (max-2) AdaBoost.ERP (rand-2)
dataset one-vs-all max-cut rand-half LRL LRLR LRL LRLR
dna 25.97 + 0.26 8.08 +0.05 8.21 +0.06 8.18 £ 0.06 8.17 £0.06 8.09 £ 0.07 8.11 +0.06
glass 35.57+1.16 | 29.48 +0.94 30.00+1.02 | 28.38 +0.87 29.43+1.04 30.57 £1.05 29.81 +0.94
iris 4.93 + 0.57 5.20 £0.56  4.40 £0.53 4.67 + 0.51 4.47 +0.51 4.33 £ 0.53 4.60 £ 0.52
letter 22.17+0.07 | 15.88£0.05 14.66 £0.05 | 13.64 £0.05 11.61 +0.04 13.65 £0.05 11.59 +0.05
pendigits 7.09 £+ 0.09 3.71 £0.03 3.72+0.03 3.72 £0.02 3.64 +0.03 3.71 £ 0.02 3.68 £ 0.03
satimage | 15.14 £0.06 | 12.84 £0.05 12.60 +0.05 | 12.37 £0.05 12.42 +0.05 12.58 £0.05 12.57 +0.05
segment 7.53+0.18 2.80 £0.12 2.74+0.11 2.81 £0.11 2.83 £0.11 2.74+£0.10 2.60+0.11
vehicle 31.58 £0.49 | 22.224+0.45 2047+0.42 | 20.39+0.42 20.86 +0.43 20.88 +0.44 20.34 +0.43
vowel 56.19 +£0.29 | 56.26 £0.28 51.61 £0.26 | 50.61 £0.22  50.97 +0.26 50.40 £ 0.26 50.31 +0.25
wine 3.22 £0.41 2.06 +0.32 2.67+0.37 2.39 £0.37 2.33 £0.37 2.39 +0.36 2.56 +0.39
10° ‘ ‘ 40
AdaBoost.ECC (max-cut)
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- — — AdaBoost.ERP (max-2, LRL) 351
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Figure 5. Multiclass boosting with the perceptron on the letter data

ter performance compared to the boosting algorithms.
So we mark in Table 4 both the lowest errors among
the boosting algorithms and the lowest errors among
all the algorithms. Note that with this base learner,
AdaBoost.ERP with only one base learning and one
repartitioning (“LR”) was already comparable to Ada-
Boost. ECC with base learning on the full training set.

SVM-perceptron brought us the overall lowest test er-
rors for most of the data sets (Table 5). Note that
we do not have all the results for dna and letter since
parameter selection on an ensemble of SVMs is time-
consuming. With this powerful base learner, all the
multiclass algorithms performed comparably well, al-
though AdaBoost.ERP was still better for some data
sets. AdaBoost.ERP was also much faster compared to
AdaBoost.ECC even though two SVMs may be learned
in one iteration of AdaBoost.ERP, since the binary
problems were usually easier.

5. Conclusion

We have proposed and tested AdaBoost.ERP, a new
multiclass boosting algorithm with error-correcting

codes and repartitioning. The repartitioning is meant
to find a better coding matrix according to the learning
ability of the base learner. Our experimental results
have shown that, compared with AdaBoost.ECC, one-
vs-one, and one-vs-all, AdaBoost.ERP achieved the
lowest training cost and test error on most of the real-
world data sets we used. The improvement can be
especially significant when the base learner is not very
powerful. AdaBoost.ERP was also faster than Ada-
Boost.ECC when working with SVM-perceptron.

Simple algorithms like one-vs-one have their advan-
tages. Compared to boosting algorithms, their train-
ing time is usually much less, and the test error can be
comparable or even lower when powerful base learners
are used. The test time can also be substantially re-
duced (Platt et al., 2000). Thus it is interesting to see
how boosting algorithms can be further improved in
these aspects.
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Table 4. Test errors (%) with the AdaBoost that aggregates 50 decision stumps as the base learner

AdaBoost.ERP (rand-2)

one-vs-one AdaBoost.ECC AdaBoost. ERP (max-2)
dataset one-vs-all max-cut rand-half LR LRLR LR LRLR
dna 6.32 7.93 7.30 £ 0.03 7.50 6.75 7.48 £0.05 7.17 £0.04
glass 26.57£0.87 | 27.29+£0.96 26.52+0.91 26.48+0.92 26484+0.94 | 26.62+£095 25.57+0.90
iris 6.00 = 0.60 6.40 £0.58  7.00 £ 0.57 5671059 6.20+0.59 | 79.33£0.75 9.13 +1.47
letter 12.12 40.12£0.24 20.82+0.05 | 27.88 16.05 16.89 £0.05 16.30 £0.04
pendigits | 4.92 8.81 5.37+£0.02 4.00£0.01 5.69 5.55 £ 0.08 5.12 +£0.02
satimage | 12.55 14.60 13.87+£0.04 | 14.75 13.65 12.74+£0.05 13.67+0.04
segment 2.66 £0.11 244+0.10 1.89+0.08 1.94 +£0.10 2.15+0.09 2.18+0.10 1.96 £+ 0.09
vehicle 24.66 £0.41 | 24.60+£0.47 22824045 | 26.01£043 23.324+0.44 | 22.80+0.43 23.05+0.44
vowel 46.10 56.93 56.64 +£0.14 | 50.33 £0.03 57.14 51.35+£0.23 56.21+0.14
wine 2.61+034 | 4724+0.51 2944040 3.50 £0.42 4.72+£0.48 3.17+£0.37 3.22+£0.42

Table 5. Test errors (%) of multiclass algorithms with the SVM-perceptron as the base learner

one-vs-one AdaBoost. ECC AdaBoost. ERP (max-2) AdaBoost.ERP (rand-2)
dataset one-vs-all max-cut rand-half LR LRLR LR LRLR
glass 28.71£0.96 | 28.52+0.90 28.14+1.01 29.00£0.98 28.05+0.88 | 28.24+0.92 28.194+0.87
iris 4.00£047 | 3.87+0.52 3.73+£0.49 3.73+£048 3.93+0.49 3.93+0.50 3.73+0.49
pendigits 1.71 £ 0.00 1.80+£0.01 1.81£0.03 2.344+£0.04 1.64+0.02 371+0.14 1.814+0.04
satimage 7.70 7.66+£0.02 7.70 £0.07 7.71+0.02 7.72 £0.05 7.76 £0.02 7.63+0.06
segment 2.09+0.09 | 221£0.10 2.08+0.09 2.09 +0.09 2.16 £ 0.09 2.10+£0.09 2.1440.09
vehicle 17.89 £0.37 | 19.08 £0.39 18.65+0.37 | 17.93+0.38 17.67+0.35 | 17.96 £0.37 17.89 £0.37
vowel 37.45 39.49+£0.14 39424029 | 36.44+0.02 39.95+£0.19 | 38.16£0.37 40.03£0.25
wine 0.94 +0.22 1224026 0.94+0.25 0.89+£0.23 1.06+0.23 1.17+0.25 0.94£0.21
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