Project 1 - BCJR algorithm

This project report is organized into 3 parts: 1. some details of the implementation of the BCJR algorithm; 2. the result of the computer tests (the main result is in Figure 1); 3. other interesting things, such as the performance of the algorithm when σ^{2} is not known precisely.
Let $u(t), \boldsymbol{s}(t), \boldsymbol{x}(t)$, and $\boldsymbol{y}(t)$ be the information bit, state vector, codebits, and the noisy codebits at time t. Assume that the total time is $T=k+4(k=1024$ is the number of the information bits and 4 is the number of dummy bits). Let $\boldsymbol{U}, \boldsymbol{X}$ and \boldsymbol{Y} be the information, codeword, and noisy codeword from time 0 to $T-1$.

1. Encoder. The generator matrix is

$$
\begin{equation*}
\left(1, \frac{G_{1}(D)}{G_{2}(D)}\right)=\left(1, \frac{1+D^{4}}{1+D+D^{2}+D^{3}+D^{4}}\right) \tag{1}
\end{equation*}
$$

Then (refer to [Berrou et al., 1993, Fig. 1(b)])

$$
\begin{align*}
\boldsymbol{s}(t+1) & =\boldsymbol{s}(t) \mathcal{A}+u(t) \mathcal{B} \tag{2}\\
\boldsymbol{x}(t) & =\boldsymbol{s}(t) \mathcal{C}+u(t) \mathcal{D}
\end{align*}
$$

where

$$
\mathcal{A}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right), \mathcal{B}=\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right), \mathcal{C}=\left(\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right), \mathcal{D}=\left(\begin{array}{ll}
1 & 1
\end{array}\right)
$$

We can verify that $G(D)$ is as given in (1). For a more convenient way for programming:

$$
\begin{aligned}
\boldsymbol{s}(t+1) & =\left(s_{1}(t)+s_{2}(t)+s_{3}(t)+s_{4}(t)+u(t), s_{1}(t), s_{2}(t), s_{3}(t)\right) \\
\boldsymbol{x}(t+1) & =\left(u(t), s_{1}(t)+s_{2}(t)+s_{3}(t)+u(t)\right)
\end{aligned}
$$

After the encoding, $x_{i}(t)$ is transformed to $\{-1,+1\}$ by mapping $0 \mapsto+1$ and $1 \mapsto-1$.
2. The trellis. There are $2^{4}=16$ states in every stage of the trellis graph. From (2), two edges exit from each state; and also two edges enter each state, since \mathcal{A} is invertible.
We use $\boldsymbol{s} \stackrel{u / \boldsymbol{x}}{\longmapsto} \boldsymbol{s}^{\prime}$ to denote an edge in the trellis graph, starting from state \boldsymbol{s}, accompanied by information bit u and codebits \boldsymbol{x}, and ending at state \boldsymbol{s}^{\prime}.
3. The weights. The evidence is $\mathcal{E}=\boldsymbol{Y}=\boldsymbol{y}(0) \ldots \boldsymbol{y}(T-1)$. What we want to calculate is

$$
p(u(t)=a \mid \mathcal{E})=\alpha \sum_{\boldsymbol{U}: u(t)=a} p(\boldsymbol{U}) p(\boldsymbol{Y} \mid \boldsymbol{X})=\alpha \sum_{\boldsymbol{U}: u(t)=a} \prod_{i=0}^{T-1} p(u(i)) p(\boldsymbol{y}(i) \mid \boldsymbol{x}(i))
$$

where the notation α is the same as in [McEliece et al., 1998]; or $\alpha=p(\boldsymbol{Y})^{-1}$. (Note that the channel is memoryless.) To apply the BCJR algorithm, we define the weight of an edge $e=\boldsymbol{s} \stackrel{u / \boldsymbol{x}}{\longmapsto} \boldsymbol{s}^{\prime}$ as

$$
w(e)=\pi(u) p(\boldsymbol{y} \mid \boldsymbol{x})
$$

where $\pi(u)$ is the a priori probability that the information bit is u.
Since we will use the log-likelihood ratio $(L L R)$, it is good to express the weight in log form. Let σ^{2} be the Gaussian noise variance of the channel. Then

$$
\begin{aligned}
\log w(e) & =\log \pi(u)+\log p(\boldsymbol{y} \mid \boldsymbol{x}) \\
& =\log \pi(u)-\frac{1}{2 \sigma^{2}}\|\boldsymbol{y}-\boldsymbol{x}\|^{2}-\log 2 \pi \sigma^{2} \\
& =\log \pi(u)-\frac{1}{2 \sigma^{2}}\left(y_{1}^{2}+x_{1}^{2}-2 x_{1} y_{1}+y_{2}^{2}+x_{2}^{2}-2 x_{2} y_{2}\right)-\log 2 \pi \sigma^{2}
\end{aligned}
$$

Since $x_{i} \in\{-1,+1\}, x_{i}^{2}$ is a constant. We can omit constants which are the same for $u=0$ and $u=1$. Thus we can define the logarithmic weight for $e \in E_{t, t+1}$ as

$$
\begin{equation*}
\tilde{w}(e)=\log \pi(u)+\frac{x_{1} y_{1}(t)+x_{2} y_{2}(t)}{\sigma^{2}} \tag{3}
\end{equation*}
$$

If $\pi(0)=\pi(1)=\frac{1}{2}$, we can further simplify (3) to

$$
\begin{equation*}
\tilde{w}(e)=\frac{x_{1} y_{1}(t)+x_{2} y_{2}(t)}{\sigma^{2}} \tag{4}
\end{equation*}
$$

4. α and β. The matrix W_{i} used in the forward-backward algorithm is very sparse. To reduce the computational complexity, we should use (see [McEliece, 2001])

$$
\begin{aligned}
\alpha_{t}\left(s^{\prime}\right) & =\sum_{\substack{u=0,1 \\
e_{u}: s_{u} \mapsto s^{\prime} \in E_{t-1, t}}} \alpha_{t-1}\left(s_{u}\right) w\left(e_{u}\right), \\
\beta_{t}(s) & =\sum_{\substack{u=0,1 \\
e_{u}: s \mapsto s_{u}^{\prime} \in E_{t, t+1}}} \beta_{t+1}\left(s_{u}^{\prime}\right) w\left(e_{u}\right)
\end{aligned}
$$

The logarithmic version is

$$
\begin{align*}
\tilde{\alpha}_{t}\left(s^{\prime}\right) & =\log \left(e^{\tilde{\alpha}_{t-1}\left(s_{0}\right)+\tilde{w}\left(e_{0}\right)}+e^{\tilde{\alpha}_{t-1}\left(\boldsymbol{s}_{1}\right)+\tilde{w}\left(e_{1}\right)}\right) \tag{5}\\
\tilde{\beta}_{t}(\boldsymbol{s}) & =\log \left(e^{\tilde{\beta}_{t+1}\left(s_{0}^{\prime}\right)+\tilde{w}\left(e_{0}\right)}+e^{\tilde{\beta}_{t+1}\left(\boldsymbol{s}_{1}^{\prime}\right)+\tilde{w}\left(e_{1}\right)}\right) \tag{6}
\end{align*}
$$

The initial values of $\tilde{\alpha}_{0}(\boldsymbol{s})$ and $\tilde{\beta}_{T}(\boldsymbol{s})$ are defined as follows:

$$
\tilde{\alpha}_{0}(s)=\tilde{\beta}_{T}(s)= \begin{cases}0, & s=\mathbf{0} \\ -\infty, & \text { otherwise }\end{cases}
$$

5. Log-likelihood Ratio. We have (assume $e=s \mapsto s^{\prime}$)

$$
\begin{aligned}
& \log p(u(t)=0 \mid \mathcal{E})=\log \sum_{e \in E_{t-1, t}^{(0)}} \alpha_{t-1}(\boldsymbol{s}) w(e) \beta_{t}\left(\boldsymbol{s}^{\prime}\right)=\log \sum_{e \in E_{t-1, t}^{(0)}} e^{\tilde{\alpha}_{t-1}(\boldsymbol{s})+\tilde{w}(e)+\tilde{\beta}_{t}\left(\boldsymbol{s}^{\prime}\right)}, \\
& \log p(u(t)=1 \mid \mathcal{E})=\log \sum_{e \in E_{t-1, t}^{(1)}} \alpha_{t-1}(\boldsymbol{s}) w(e) \beta_{t}\left(\boldsymbol{s}^{\prime}\right)=\log \sum_{e \in E_{t-1, t}^{(1)}} e^{\tilde{\alpha}_{t-1}(\boldsymbol{s})+\tilde{w}(e)+\tilde{\beta}_{t}\left(\boldsymbol{s}^{\prime}\right)},
\end{aligned}
$$

and thus

$$
L L R_{t}=\log \frac{p(u(t)=0 \mid \mathcal{E})}{p(u(t)=1 \mid \mathcal{E})}=\log p(u(t)=0 \mid \mathcal{E})-\log p(u(t)=1 \mid \mathcal{E})
$$

6. Approximation of $\log \left(e^{x}+e^{y}\right)$. We are asked to use the logarithmic weights ((3) or (4)) to calculate $L L R$. This poses a problem with (5) and (6): how to calculate $\log \left(e^{x}+e^{y}\right)$ without doing log or exp. From Homework 2.2,

$$
\log \left(e^{x}+e^{y}\right)=\max \{x, y\}+f(|x-y|),
$$

where $f(\Delta)=\log \left(1+e^{-\Delta}\right)$. Here we approximate $f(\Delta)$. I tried:

- $f \equiv 0$. That is, use only $\max \{x, y\}$ to approximate $\log \left(e^{x}+e^{y}\right)$.
- 2-bit approximation. I tried two methods in my solution to Homework 2.2.

It turns out that the approximation in my solution 2.2(b) is the best among those three, and $f \equiv 0$ is almost as good as the approximation in the solution 2.2(a).
7. Histogram and normalization. We are asked to plot a histogram for $\left\{L L R_{t}\right\}_{t=0}^{k-1}$, or more precisely, the adjusted $L L R$, i.e., $\left\{u(t) \cdot L L R_{t}\right\}_{t=0}^{k-1}$. We do not care about the $L L R$ for the dummy bits.
If we divide the range of $L L R_{t}$ into M bins, and count the number of $L L R_{t}$'s in each bin, then we can plot the histogram. However, we can do better. We can make a probability density from the histogram if we do a normalization before plotting.
Assume all the bins have the same width, w. Denote the number of $L L R_{t}$ in bin i by c_{i}. Then the probability density of $L L R_{t}$ in bin i is

$$
p_{i}=\frac{c_{i}}{w \cdot k}
$$

since p_{i} is proportional to c_{i} and the 'integrate' of $p_{i}, \sum_{i} w p_{i}=1$. For r runs (making the histogram of $L L R$ more accurate),

$$
p_{i}=\frac{c_{i}}{w \cdot k \cdot r}
$$

8. Random number generator. From [Press et al., 1992, Section 7.1], a linear congruential method for generating random numbers is not free of sequential correlation on successive calls. If the period is as small as 32768 , the number of lines on which pairs of points lie in 2D space will be no greater than $\sqrt{32768}$, or 181 . In this project, we will need about $10^{7}(\approx 2 T \times 5000$ runs $)$ random numbers. So I used the random number generator ran1() in [Press et al., 1992, Section 7.1]. However, my results from the computer tests didn't show much difference.
9. Basic results. The BCJR decoding algorithm was run 5000 times to determine the distribution of the adjusted $L L R$ and the average $B E R$ (bit error rate). These tests were performed for several different values of E_{b} / N_{0}. The results are shown in Figure 1.
If we conjecture that the distribution of the adjusted $L L R$ is Gaussian $\mathcal{N}\left(\ell, \sigma^{2}\right)$, we can calculate the $B E R$ from the Gaussian distribution as

$$
\begin{equation*}
B E R_{t}=\int_{-\infty}^{0} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\ell)^{2}}{2 \sigma^{2}}} d x=\frac{1}{\sqrt{\pi}} \int_{\ell / \sqrt{2 \sigma^{2}}}^{\infty} e^{-t^{2}} d t=\frac{1}{2} \operatorname{erfc}\left(\frac{\ell}{\sqrt{2 \sigma^{2}}}\right) \tag{7}
\end{equation*}
$$

where $\operatorname{erfc}(t)=\frac{2}{\sqrt{\pi}} \int_{t}^{\infty} e^{-t^{2}} d t$ can be calculated by $\operatorname{erfc}()$ in Matlab or $\operatorname{Erfc}[]$ in Mathematica. The mean ℓ and variance σ^{2} can be statistically calculated from the adjusted $L L R$
data. Although Figure 1 (a) shows a good match of the real distribution of $L L R$ with the Gaussian approximation, Figure 1(b) implies that they two are not the same.
Below I list the average number of errors (in k bits) over 5000 runs of the decoding, and $k \cdot B E R_{t}$, the number of errors from the corresponding Gaussian distribution.

$E_{b} / N_{0}(\mathrm{~dB})$	6	5	4	3	2	1
Actual error	0.0010	0.0224	0.2458	1.8120	9.3418	34.4954
Gaussian error	0.000144	0.00519	0.1029	1.1990	8.9720	39.0258

10. Other interesting things.
(a) Random codeword. The codeword we used in the previous tests was generated by the recursion $u_{n+6}=u_{n+1} \oplus u_{n}$ with period 63 . I also tried randomly generated codewords. The results are similar.

$E_{b} / N_{0}(\mathrm{~dB})$	6	5	4	3	2	1
Actual error	0.0014	0.0246	0.2410	1.7946	9.3622	34.1514
Gaussian error	0.000147	0.00522	0.0992	1.2054	8.9587	38.5913

(b) Unknown σ^{2}. One difference between the BCJR algorithm and the Viterbi algorithm is that we need to know the channel variance in the BCJR algorithm. We might wonder, if our guess of σ^{2} is not the same as the real value of σ^{2}, how well the BCJR algorithm would perform. I tested the performance of the BCJR algorithm when our guess for σ^{2} is $10^{0.1}$ larger than the real value, that is, our guess for E_{b} / N_{0} is 1 dB below the true value. Figure 3 shows that (compared to Figure 2) the distribution of $L L R$ of $E_{b} / N_{0}=\lambda \mathrm{dB}$ seems to have the same mean and smaller variance as the distribution of $L L R$ of $E_{b} / N_{0}=(\lambda-1) \mathrm{dB}$ in Figure 2(a). However, the $B E R$ and $B E R_{t}$ changes little. (See table below.)

$E_{b} / N_{0}(\mathrm{~dB})$	6	5	4	3	2	1
Actual error	0.0014	0.0248	0.2400	1.8032	9.4012	34.3674
Gaussian error	0.000142	0.00511	0.0994	1.2449	9.4592	40.6020

(c) Near-linear relationship. Notice that the mean and the variance of the adjusted $L L R$ both increase with E_{b} / N_{0}. It is interesting to find (Figure 4) a simple linear relationship between the mean and the variance of the adjusted $L L R$. However, a common feature of the points in Figure 4 is that points with smaller mean and larger mean have larger slope than points between them. My guess of the real variation vs. mean curve is that it is a little like tan - with bounds in both directions for the mean. We know that the mean of the adjusted $L L R$ should not be negative. I also guess that the upper bound for the mean is related to the free distance of the code.
(d) Other random number generators. I also tried some other random number generators, including the one with period 32768 . The resulting $B E R$'s are similar to those got with ran1, though differences do exist. However, I did not test all those RNGs throughly.
(e) Asymmetry of $L L R$. We assumed that $L L R$ satisfies the Gaussian distribution. However, after careful observation of Figure $1(\mathrm{a})$ (of course, we need a larger plot. see Figure 5), the $L L R$ distribution is not symmetric. The left half-part is wider when E_{b} / N_{0} is big, thus the $B E R$ calculated by (7) is smaller than the real one; when E_{b} / N_{0} is small, the right half-part is wider thus the $B E R$ by the Gaussian is larger than the real one.More precisely, when E_{b} / N_{0} is around 1.8 , the $L L R$ distribution is roughly symmetric. Now,

Figure 1: Result plots from 5000 runs of the BCJR decoding algorithm. ran1() in [Press et al., 1992] is used. (a) In each subplot, the blue curve outlines the distribution (histogram with 100 bins) of adjusted $L L R$ under corresponding E_{b} / N_{0}, and the red curve is the Gaussian distribution with mean and variance from the real $L L R$ data. (b) The blue circles give the average $B E R$ for 11 different tests. The red curve is the $B E R$ calculated by (7).

Figure 2: Result plots when the codeword is randomly generated. See Figure 1 for details.

Figure 3: Result plots when the codeword is randomly generated and the guess of E_{b} / N_{0} is 1 dB lower that the true value. See Figure 1 for details.

Figure 4: Near-linear relationship between the mean and the variance of the adjusted $L L R$. Note that the lines are linear regressions of corresponding points.
from Figure $1(\mathrm{~b})$ we can see those two $B E R$ s coincide at $E_{b} / N_{0} \approx 1.8$. What's more, in Figure 4 , the variance is now twice of the mean.

Figure 5: The adjusted $L L R$ distribution is asymmetric ($E_{b} / N_{0}=1 \mathrm{~dB}$, other conditions are same as Figure $1(\mathrm{a})$). The blue curve is the actual distribution of $L L R$, and the red curve is the reflection of the blue one about the mean. The black dashed curve is the Gaussian distribution with the same mean and variance.

References

[Berrou et al., 1993] Berrou, C., Glavieux, A., and Thitimajshima, P. (1993). Near Shannon limit error-correcting coding and decoding: Turbo-codes (1). In Proceedings of IEEE International Communications Conference (ICC'93), volume 2, pages 1064-1070, Geneva, Switzerland.
[McEliece, 2001] McEliece, R. J. (2001). The forward-backward algorithm. Handout for the course EE/Ma 127c Error-Correcting Codes.
[McEliece et al., 1998] McEliece, R. J., MacKay, D. J. C., and Cheng, J.-F. (1998). Turbo decoding as an instance of Pearl's "belief propagation" algorithm. IEEE Journal on Selected Areas in Communications, 16(2):140-152.
[Press et al., 1992] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2nd edition.

