
EE/Ma 127c Error-Correcting Codes
draft of May 11, 2001

Ling Li
ling@cs.caltech.edu

Project 1 – BCJR algorithm

This project report is organized into 3 parts: 1. some details of the implementation of the BCJR
algorithm; 2. the result of the computer tests (the main result is in Figure 1); 3. other interesting
things, such as the performance of the algorithm when σ2 is not known precisely.

Let u(t), s(t), x(t), and y(t) be the information bit, state vector, codebits, and the noisy codebits
at time t. Assume that the total time is T = k+ 4 (k = 1024 is the number of the information bits
and 4 is the number of dummy bits). Let U , X and Y be the information, codeword, and noisy
codeword from time 0 to T − 1.

1. Encoder. The generator matrix is(
1,
G1(D)
G2(D)

)
=
(

1,
1 +D4

1 +D +D2 +D3 +D4

)
. (1)

Then (refer to [Berrou et al., 1993, Fig. 1(b)])

s(t+ 1) = s(t)A+ u(t)B, (2)
x(t) = s(t)C + u(t)D,

where

A =

1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0

 ,B =
(

1 0 0 0
)
, C =

0 1
0 1
0 1
0 0

 ,D =
(

1 1
)
.

We can verify that G(D) is as given in (1). For a more convenient way for programming:

s(t+ 1) = (s1(t) + s2(t) + s3(t) + s4(t) + u(t), s1(t), s2(t), s3(t)) ,
x(t+ 1) = (u(t), s1(t) + s2(t) + s3(t) + u(t)) .

After the encoding, xi(t) is transformed to {−1,+1} by mapping 0 7→ +1 and 1 7→ −1.

2. The trellis. There are 24 = 16 states in every stage of the trellis graph. From (2), two edges
exit from each state; and also two edges enter each state, since A is invertible.

We use s
u/x7−→ s′ to denote an edge in the trellis graph, starting from state s, accompanied by

information bit u and codebits x, and ending at state s′.

3. The weights. The evidence is E = Y = y(0) . . .y(T − 1). What we want to calculate is

p(u(t) = a|E) = α
∑

U :u(t)=a

p(U)p(Y |X) = α
∑

U :u(t)=a

T−1∏
i=0

p(u(i))p(y(i)|x(i)),

where the notation α is the same as in [McEliece et al., 1998]; or α = p(Y)−1. (Note that
the channel is memoryless.) To apply the BCJR algorithm, we define the weight of an edge

e = s
u/x7−→ s′ as

w(e) = π(u)p(y|x),

1

where π(u) is the a priori probability that the information bit is u.

Since we will use the log-likelihood ratio (LLR), it is good to express the weight in log form.
Let σ2 be the Gaussian noise variance of the channel. Then

logw(e) = log π(u) + log p(y|x)

= log π(u)− 1
2σ2
‖y − x‖2 − log 2πσ2

= log π(u)− 1
2σ2

(
y2

1 + x2
1 − 2x1y1 + y2

2 + x2
2 − 2x2y2

)
− log 2πσ2.

Since xi ∈ {−1,+1}, x2
i is a constant. We can omit constants which are the same for u = 0

and u = 1. Thus we can define the logarithmic weight for e ∈ Et,t+1 as

w̃(e) = log π(u) +
x1y1(t) + x2y2(t)

σ2
. (3)

If π(0) = π(1) = 1
2 , we can further simplify (3) to

w̃(e) =
x1y1(t) + x2y2(t)

σ2
. (4)

4. α and β. The matrix Wi used in the forward-backward algorithm is very sparse. To reduce
the computational complexity, we should use (see [McEliece, 2001])

αt(s′) =
∑
u=0,1

eu:su 7→s′∈Et−1,t

αt−1(su)w(eu),

βt(s) =
∑
u=0,1

eu:s7→s′u∈Et,t+1

βt+1(s′u)w(eu).

The logarithmic version is

α̃t(s′) = log
(
eα̃t−1(s0)+w̃(e0) + eα̃t−1(s1)+w̃(e1)

)
, (5)

β̃t(s) = log
(
eβ̃t+1(s′0)+w̃(e0) + eβ̃t+1(s′1)+w̃(e1)

)
. (6)

The initial values of α̃0(s) and β̃T (s) are defined as follows:

α̃0(s) = β̃T (s) =
{

0, s = 0;
−∞, otherwise.

5. Log-likelihood Ratio. We have (assume e = s 7→ s′)

log p(u(t) = 0|E) = log
∑

e∈E(0)
t−1,t

αt−1(s)w(e)βt(s′) = log
∑

e∈E(0)
t−1,t

eα̃t−1(s)+w̃(e)+β̃t(s′),

log p(u(t) = 1|E) = log
∑

e∈E(1)
t−1,t

αt−1(s)w(e)βt(s′) = log
∑

e∈E(1)
t−1,t

eα̃t−1(s)+w̃(e)+β̃t(s′),

and thus

LLRt = log
p(u(t) = 0|E)
p(u(t) = 1|E)

= log p(u(t) = 0|E)− log p(u(t) = 1|E).

2

6. Approximation of log(ex + ey). We are asked to use the logarithmic weights ((3) or (4)) to
calculate LLR. This poses a problem with (5) and (6): how to calculate log (ex + ey) without
doing log or exp. From Homework 2.2,

log (ex + ey) = max {x, y}+ f(|x− y|),

where f(∆) = log
(
1 + e−∆

)
. Here we approximate f(∆). I tried:

• f ≡ 0. That is, use only max {x, y} to approximate log (ex + ey).

• 2-bit approximation. I tried two methods in my solution to Homework 2.2.

It turns out that the approximation in my solution 2.2(b) is the best among those three, and
f ≡ 0 is almost as good as the approximation in the solution 2.2(a).

7. Histogram and normalization. We are asked to plot a histogram for {LLRt}k−1
t=0 , or more

precisely, the adjusted LLR, i.e., {u(t) · LLRt}k−1
t=0 . We do not care about the LLR for the

dummy bits.

If we divide the range of LLRt into M bins, and count the number of LLRt’s in each bin,
then we can plot the histogram. However, we can do better. We can make a probability
density from the histogram if we do a normalization before plotting.

Assume all the bins have the same width, w. Denote the number of LLRt in bin i by ci.
Then the probability density of LLRt in bin i is

pi =
ci
w · k

,

since pi is proportional to ci and the ‘integrate’ of pi,
∑

iwpi = 1. For r runs (making the
histogram of LLR more accurate),

pi =
ci

w · k · r
.

8. Random number generator. From [Press et al., 1992, Section 7.1], a linear congruential method
for generating random numbers is not free of sequential correlation on successive calls. If the
period is as small as 32768, the number of lines on which pairs of points lie in 2D space will be
no greater than

√
32768, or 181. In this project, we will need about 107 (≈ 2T × 5000 runs)

random numbers. So I used the random number generator ran1() in [Press et al., 1992,
Section 7.1]. However, my results from the computer tests didn’t show much difference.

9. Basic results. The BCJR decoding algorithm was run 5000 times to determine the distribution
of the adjusted LLR and the average BER (bit error rate). These tests were performed for
several different values of Eb/N0. The results are shown in Figure 1.

If we conjecture that the distribution of the adjusted LLR is Gaussian N (`, σ2), we can
calculate the BER from the Gaussian distribution as

BERt =
∫ 0

−∞

1√
2πσ2

e−
(x−`)2

2σ2 dx =
1√
π

∫ ∞
`/
√

2σ2

e−t
2
dt =

1
2

erfc
(

`√
2σ2

)
, (7)

where erfc(t) = 2√
π

∫∞
t e−t

2
dt can be calculated by erfc() in Matlab or Erfc[] in Mathe-

matica. The mean ` and variance σ2 can be statistically calculated from the adjusted LLR

3

data. Although Figure 1(a) shows a good match of the real distribution of LLR with the
Gaussian approximation, Figure 1(b) implies that they two are not the same.

Below I list the average number of errors (in k bits) over 5000 runs of the decoding, and
k ·BERt, the number of errors from the corresponding Gaussian distribution.

Eb/N0 (dB) 6 5 4 3 2 1
Actual error 0.0010 0.0224 0.2458 1.8120 9.3418 34.4954

Gaussian error 0.000144 0.00519 0.1029 1.1990 8.9720 39.0258

10. Other interesting things.

(a) Random codeword. The codeword we used in the previous tests was generated by the
recursion un+6 = un+1⊕ un with period 63. I also tried randomly generated codewords.
The results are similar.

Eb/N0 (dB) 6 5 4 3 2 1
Actual error 0.0014 0.0246 0.2410 1.7946 9.3622 34.1514

Gaussian error 0.000147 0.00522 0.0992 1.2054 8.9587 38.5913

(b) Unknown σ2. One difference between the BCJR algorithm and the Viterbi algorithm is
that we need to know the channel variance in the BCJR algorithm. We might wonder,
if our guess of σ2 is not the same as the real value of σ2, how well the BCJR algorithm
would perform. I tested the performance of the BCJR algorithm when our guess for
σ2 is 100.1 larger than the real value, that is, our guess for Eb/N0 is 1dB below the
true value. Figure 3 shows that (compared to Figure 2) the distribution of LLR of
Eb/N0 = λdB seems to have the same mean and smaller variance as the distribution of
LLR of Eb/N0 = (λ−1)dB in Figure 2(a). However, the BER and BERt changes little.
(See table below.)

Eb/N0 (dB) 6 5 4 3 2 1
Actual error 0.0014 0.0248 0.2400 1.8032 9.4012 34.3674

Gaussian error 0.000142 0.00511 0.0994 1.2449 9.4592 40.6020

(c) Near-linear relationship. Notice that the mean and the variance of the adjusted LLR
both increase with Eb/N0. It is interesting to find (Figure 4) a simple linear relationship
between the mean and the variance of the adjusted LLR. However, a common feature
of the points in Figure 4 is that points with smaller mean and larger mean have larger
slope than points between them. My guess of the real variation vs. mean curve is that
it is a little like tan — with bounds in both directions for the mean. We know that the
mean of the adjusted LLR should not be negative. I also guess that the upper bound
for the mean is related to the free distance of the code.

(d) Other random number generators. I also tried some other random number generators,
including the one with period 32768. The resulting BER’s are similar to those got with
ran1, though differences do exist. However, I did not test all those RNGs throughly.

(e) Asymmetry of LLR. We assumed that LLR satisfies the Gaussian distribution. However,
after careful observation of Figure 1(a) (of course, we need a larger plot. see Figure 5),
the LLR distribution is not symmetric. The left half-part is wider when Eb/N0 is big,
thus the BER calculated by (7) is smaller than the real one; when Eb/N0 is small, the
right half-part is wider thus the BER by the Gaussian is larger than the real one.More
precisely, when Eb/N0 is around 1.8, the LLR distribution is roughly symmetric. Now,

4

0 20 40 60 80
0

2

4

6

8

10

E
b
/N

0
 = 1dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60 80

0

2

4

6

8

10

E
b
/N

0
 = 2dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60 80

0

2

4

6

8

10

E
b
/N

0
 = 3dB

P
er

ce
nt

ag
e

(%
)

LLR

0 20 40 60 80
0

2

4

6

8

10

E
b
/N

0
 = 4dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60 80

0

2

4

6

8

10

E
b
/N

0
 = 5dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60 80

0

2

4

6

8

10

E
b
/N

0
 = 6dB

P
er

ce
nt

ag
e

(%
)

LLR

(a) Distributions of LLR

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0

B
E

R
 (

bi
t e

rr
or

 r
at

e)

Actual BER
BER from the Gaussian dist.

(b) BER vs. Eb/N0

Figure 1: Result plots from 5000 runs of the BCJR decoding algorithm. ran1() in
[Press et al., 1992] is used. (a) In each subplot, the blue curve outlines the distribution (histogram
with 100 bins) of adjusted LLR under corresponding Eb/N0, and the red curve is the Gaussian
distribution with mean and variance from the real LLR data. (b) The blue circles give the average
BER for 11 different tests. The red curve is the BER calculated by (7).

0 20 40 60 80
0

2

4

6

8

10

E
b
/N

0
 = 1dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60 80

0

2

4

6

8

10

E
b
/N

0
 = 2dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60 80

0

2

4

6

8

10

E
b
/N

0
 = 3dB

P
er

ce
nt

ag
e

(%
)

LLR

0 20 40 60 80
0

2

4

6

8

10

E
b
/N

0
 = 4dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60 80

0

2

4

6

8

10

E
b
/N

0
 = 5dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60 80

0

2

4

6

8

10

E
b
/N

0
 = 6dB

P
er

ce
nt

ag
e

(%
)

LLR

(a) Distributions of LLR

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0

B
E

R
 (

bi
t e

rr
or

 r
at

e)

Actual BER
BER from the Gaussian dist.

(b) BER vs. Eb/N0

Figure 2: Result plots when the codeword is randomly generated. See Figure 1 for details.

5

0 20 40 60
0

2

4

6

8

10

12

E
b
/N

0
 = 1dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60

0

2

4

6

8

10

12

E
b
/N

0
 = 2dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60

0

2

4

6

8

10

12

E
b
/N

0
 = 3dB

P
er

ce
nt

ag
e

(%
)

LLR

0 20 40 60
0

2

4

6

8

10

12

E
b
/N

0
 = 4dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60

0

2

4

6

8

10

12

E
b
/N

0
 = 5dB

P
er

ce
nt

ag
e

(%
)

LLR
0 20 40 60

0

2

4

6

8

10

12

E
b
/N

0
 = 6dB

P
er

ce
nt

ag
e

(%
)

LLR

(a) Distributions of LLR

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0

B
E

R
 (

bi
t e

rr
or

 r
at

e)

Actual BER
BER from the Gaussian dist.

(b) BER vs. Eb/N0

Figure 3: Result plots when the codeword is randomly generated and the guess of Eb/N0 is 1dB
lower that the true value. See Figure 1 for details.

5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

mean(LLR)

va
r(

LL
R

)

LLR
v = 1.3291m + 7.7897
LLR (random codeword)
v = 1.3335m + 7.6797
LLR (guess sigma)
v = 1.0623m + 4.6034

Figure 4: Near-linear relationship between the mean and the variance of the adjusted LLR. Note
that the lines are linear regressions of corresponding points.

6

from Figure 1(b) we can see those two BERs coincide at Eb/N0 ≈ 1.8. What’s more, in
Figure 4, the variance is now twice of the mean.

−15 −10 −5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

LLR

P
er

ce
nt

ag
e

(%
)

E
b
/N

0
 = 1dB

LLR dist.
LLR mirror
Gaussian

Figure 5: The adjusted LLR distribution is asymmetric (Eb/N0 = 1dB, other conditions are same
as Figure 1(a)) . The blue curve is the actual distribution of LLR, and the red curve is the reflection
of the blue one about the mean. The black dashed curve is the Gaussian distribution with the same
mean and variance.

References

[Berrou et al., 1993] Berrou, C., Glavieux, A., and Thitimajshima, P. (1993). Near Shannon limit
error-correcting coding and decoding: Turbo-codes (1). In Proceedings of IEEE International
Communications Conference (ICC’93), volume 2, pages 1064–1070, Geneva, Switzerland.

[McEliece, 2001] McEliece, R. J. (2001). The forward-backward algorithm. Handout for the course
EE/Ma 127c Error-Correcting Codes.

[McEliece et al., 1998] McEliece, R. J., MacKay, D. J. C., and Cheng, J.-F. (1998). Turbo decoding
as an instance of Pearl’s “belief propagation” algorithm. IEEE Journal on Selected Areas in
Communications, 16(2):140–152.

[Press et al., 1992] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992).
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 2nd
edition.

7

