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Learning Problem

Setup

fixed-length example: D-dimensional vector x , each component is
a feature

raw digital sampling of a 0.5 sec. wave file
DFT of the raw sampling
a fixed-length feature vector extracted from the wave file

label: a number y ∈ Y
binary classification: is there a man speaking in the wave file?
(y = +1 if man, y = −1 if not)
multi-class classification: which speaker is speaking?
(y ∈ {1, 2, · · · , K})
regression: how excited is the speaker? (y ∈ R)
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Learning Problem

Binary Classification Problem

learning problem: given training examples and labels {(xi , yi)}N
i=1,

find a function g(x) : X → Y that predicts the label of unseen x
well

vowel identification: given training wave files and their vowel labels,
find a function g(x) that translates wave files to vowel well

we will focus on binary classification problem: Y = {+1,−1}
most basic learning problem, but very useful and can be extended
to other problems

illustrative demo: for examples with two different color in a
D-dimensional space, how can we “separate” the examples?
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Support Vector Machine

Hyperplane Classifier

use a hyperplane to separate the two colors:
g(x) = sign

(
wT x + b

)
if wT + b ≥ 0, the classifier returns +1, otherwise the classifier
returns −1

possibly lots of hyperplanes satisfying our needs, which one
should we choose?
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Support Vector Machine

SVM: Large-Margin Hyperplane Classifier

margin ρi = yi(wT x + b)/‖w‖2:
does yi agree with wT x + b in sign?
how large is the distance between the example and the separating
hyperplane?

large positive margin → clear separation → low risk classification
idea of SVM: maximize the minimum margin

max
w ,b

min
i

ρi

s.t. ρi = yi(w
T xi + b)/‖w‖2 ≥ 0
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Support Vector Machine

Hard-Margin Linear SVM

maximize the minimum margin

max
w ,b

min
i

ρi

s.t. ρi = yi(w
T xi + b)/‖w‖2 ≥ 0, i = 1, . . . , N.

equivalent to

min
w ,b

1
2

wT w

s.t. yi(w
T xi + b) ≥ 1, i = 1, . . . , N.

– hard-margin linear SVM
quadratic programming with D + 1 variables: well-studied in
optimization
is the hard-margin linear SVM good enough?
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Support Vector Machine

Soft-Margin Linear SVM

hard-margin – hard constraints on separation:

min
w ,b

1
2

wT w

s.t. yi(w
T xi + b) ≥ 1, i = 1, . . . , N.

no feasible solution if some noisy outliers exist
soft-margin – soft constraints as cost:

min
w ,b

1
2

wT w + C
∑

i

ξi

s.t. yi(w
T xi + b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , N.

allow the noisy examples to have ξi > 0 with a cost
is linear SVM good enough?
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Support Vector Machine

Soft-Margin Nonlinear SVM

what if we want a boundary g(x) = sign
(
xT x − 1

)
?

can never be constructed with a hyperplane classifier
sign

(
wT x + b

)
however, we can have more complex feature transforms:

φ(x) = [(x)1, (x)2, · · · , (x)D, (x)1(x)1, (x)1(x)2, · · · , (x)D(x)D]

there is a classifier sign
(
wT φ(x) + b

)
that describes the boundary

soft-margin nonlinear SVM:

min
w ,b

1
2

wT w + C
∑

i

ξi

s.t. yi(w
T φ(xi) + b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , N.

– with nonlinear φ(·)
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Support Vector Machine

Feature Transformation

what feature transforms φ(·) should we use?

we can only extract finite small number of features, but we can use
unlimited number of feature transforms
traditionally:

use domain knowledge to do feature transformation
use only “useful” feature transformation
use a small number of feature transformation

control the goodness of fitting by suitable choice of feature
transformation
what if we use “infinite number” of feature transformation, and let
the algorithm decide a good w automatically?

would infinite number of transformations introduce overfitting?
are we able to solve the optimization problem?
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Support Vector Machine

Dual Problem

infinite quadratic programming if infinite φ(·):

min
w ,b

1
2

wT w + C
∑

i

ξi

s.t. yi(w
T φ(xi) + b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, . . . , N.

luckily, we can solve its associated dual problem:

min
α

1
2
αT Qα− eT α

s.t. yT α = 0,

0 ≤ αi ≤ C,

Qij ≡ yiyjφ
T (xi)φ(xj)

α: N-dimensional vector
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Support Vector Machine

Solution of the Dual Problem

associated dual problem:

min
α

1
2
αT Qα− eT α

s.t. yT α = 0,

0 ≤ αi ≤ C,

Qij ≡ yiyjφ
T (xi)φ(xj)

equivalent solution:

g(x) = sign
(

wT x + b
)

= sign
(∑

yiαiφ
T (xi)φ(x) + b

)
no need for w and φ(x) explicitly if we can compute
K (x , x ′) = φT (x)φ(x ′) efficiently
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Support Vector Machine

Kernel Trick

let kernel K (x , x ′) = φT (x)φ(x ′)

revisit: can we compute the kernel of

φ(x) = [(x)1, (x)2, · · · , (x)D, (x)1(x)1, (x)1(x)2, · · · , (x)D(x)D]

efficiently?

well, not really

how about this?

φ(x) =
[√

2(x)1,
√

2(x)2, · · · ,
√

2(x)D, (x)1(x)1, · · · , (x)D(x)D

]
K (x , x ′) = (1 + xT x ′)2 − 1
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Support Vector Machine

Different Kernels

types of kernels
linear K (x , x ′) = xT x ′,
polynomial: K (x , x ′) = (axT x ′ + r)d

Gaussian RBF: K (x , x ′) = exp(−γ‖x − x ′‖2
2)

Laplacian RBF: K (x , x ′) = exp(−γ‖x − x ′‖1)

the last two equivalently have feature transformation in infinite
dimensional space!

new paradigm for machine learning: use many many feature
transformations, control the goodness of fitting by large-margin
(clear separation) and violation cost (amount of outlier allowed)
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Properties of SVM

Support Vectors: Meaningful Representation

min
α

1
2
αT Qα− eT α

s.t. yT α = 0,

0 ≤ αi ≤ C,

equivalent solution:

g(x) = sign
(∑

yiαiK (xi , x) + b
)

only those with αi > 0 are needed for classification – support
vectors
from optimality conditions, αi :

“= 0”: no need in constructing the decision function,
away from the boundary or on the boundary
“> 0 and < C”: free support vector, on the boundary
“= C”: bounded support vector,
violate the boundary (ξi > 0) or on the boundary
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Properties of SVM

Why is SVM Successful?

infinite number of feature transformation: suitable for conquering
nonlinear classification tasks

large-margin concept: theoretically promising

soft-margin trade-off: controls regularization well

convex optimization problems: possible for good optimization
algorithms (compared to Neural Networks and some other
learning algorithms)

support vectors: useful in data analysis and interpretation
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Properties of SVM

Why is SVM Not Successful?

SVM can be sensitive to scaling and parameters

standard SVM is only a “discriminative” classification algorithm

SVM training can be time-consuming when N is large and the
solver is not carefully implemented

infinite number of feature transformation ⇔ mysterious classifier
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Using SVM

Useful Extensions of SVM

multiclass SVM: use 1vs1 approach to combine binary SVM to
multiclass
– the label that gets more votes from the classifiers is the
prediction

probability output: transform the raw output wT φ(x) + b to a value
between [0, 1] to mean P(+1|x)
– use a sigmoid function to transform from R → [0, 1]

infinite ensemble learning (Lin and Li 2005):
if the kernel K (x , x ′) = −‖x − x ′‖1 is used for standard SVM, the
classifier is equivalently

g(x) = sign
(∫

wθsθ(x)dθ + b
)

where sθ(x) is a thresholding rule on one feature of x .
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Using SVM

Basic Use of SVM

scale each feature of your data to a suitable range (say, [−1, 1])

use a Gaussian RBF kernel K (x , x ′) = exp(−γ‖x − x ′‖2
2)

use cross validation and grid search to determine a good (γ, C)
pair

use the best (γ, C) on your training set

do testing with the SVM classifier

all included in LIBSVM (from Lab of Prof. Chih-Jen Lin)
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Using SVM

Advanced Use of SVM

include domain knowledge by specific kernel design (e.g. train a
generative model for feature extraction, and use the extracted
feature in SVM to get discriminative power)

combining SVM with your favorite tools (e.g. HMM + SVM for
speech recognition)

fine-tune SVM parameters with specific knowledge of your
problem (e.g. different costs for different examples?)

interpreting the SVM results you get (e.g. are the SVs
meaningful?)
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Using SVM

Resources

LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm

LIBSVM Tools:
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools

Kernel Machines Forum: http://www.kernel-machines.org

Hsu, Chang, and Lin: A Practical Guide to Support Vector
Classification

my email: htlin@caltech.edu

acknowledgment: some figures obtained from Prof. Chih-Jen Lin
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