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Learning Problem
Setup

@ fixed-length example: D-dimensional vector x, each component is
a feature

o raw digital sampling of a 0.5 sec. wave file
o DFT of the raw sampling
o a fixed-length feature vector extracted from the wave file

@ label: anumbery € Y

@ binary classification: is there a man speaking in the wave file?
(y = +1lifman,y = —1if not)

e multi-class classification: which speaker is speaking?
(y € {1’2"" ’K})

e regression: how excited is the speaker? (y € R)
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Learning Problem
Binary Classification Problem

@ learning problem: given training examples and labels {(xi,yi)}iN:l,
find a function g(x) : X — Y that predicts the label of unseen x
well

e vowel identification: given training wave files and their vowel labels,
find a function g(x) that translates wave files to vowel well

@ we will focus on binary classification problem: Y = {+1, -1}

@ most basic learning problem, but very useful and can be extended
to other problems

@ illustrative demo: for examples with two different color in a
D-dimensional space, how can we “separate” the examples?
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Support Vector Machine
Hyperplane Classifier

@ use a hyperplane to separate the two colors:
g(x) = sign(w'x + b)

e ifw' + b > 0, the classifier returns +1, otherwise the classifier
returns —1

@ possibly lots of hyperplanes satisfying our needs, which one
should we choose?
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Support Vector Machine

SVM: Large-Margin Hyperplane Classifier

o margin p; = yi(w'x + b)/||w|:
e doesy; agree with w'x + b in sign?
e how large is the distance between the example and the separating
hyperplane?
@ large positive margin — clear separation — low risk classification
@ idea of SVM: maximize the minimum margin

max min p;
w,b i

st pi=Yi(wTx +b)/||w|z >0
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Support Vector Machine

Hard-Margin Linear SVM

@ maximize the minimum margin
max min p;
w,b i

st pi=yiw'x +b)/|wl,>0,i=1,...,N.

@ equivalent to
. 1
mn  -w'w
w,b 2

st. yi(w'xi+b)>1i=1,...,N.

— hard-margin linear SVM
@ quadratic programming with D + 1 variables: well-studied in
optimization
@ is the hard-margin linear SVM good enough?
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Support Vector Machine
Soft-Margin Linear SVM

@ hard-margin — hard constraints on separation:
. 1
mn Zw'w
w,b 2
st. yi(w'xi+b)>1i=1,...,N.

@ no feasible solution if some noisy outliers exist
@ soft-margin — soft constraints as cost:

1.

r\}vnkr; EW W—i—CiZ{.

st yiw'xi+b)>1-¢,
6£>0i=1,...N.

@ allow the noisy examples to have & > 0 with a cost
@ is linear SVM good enough?
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Support Vector Machine
Soft-Margin Nonlinear SVM

@ what if we want a boundary g(x) = sign(xTx — 1)?

@ can never be constructed with a hyperplane classifier
sign(w'x + b)

@ however, we can have more complex feature transforms:

B(x) = [(X)1, (X)2, - -+, (X)ps (X)2(X)15 (X)2(X)25 -, (X)p(X)p]

@ there is a classifier sign(wT o(x) + b) that describes the boundary
@ soft-margin nonlinear SVM:

. 1+
min EW W+CZ&

w,b

st yi(w'¢(xi) +b) >
& >0,i=1,...,N.

— with nonlinear ¢(-)
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Support Vector Machine

Feature Transformation

@ what feature transforms ¢(-) should we use?
@ we can only extract finite small number of features, but we can use
unlimited number of feature transforms
@ traditionally:
e use domain knowledge to do feature transformation
@ use only “useful” feature transformation
@ use a small number of feature transformation
@ control the goodness of fitting by suitable choice of feature
transformation

@ what if we use “infinite number” of feature transformation, and let
the algorithm decide a good w automatically?

o are we able to solve the optimization problem?
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Support Vector Machine
Dual Problem

@ infinite quadratic programming if infinite ¢(-):

1

rvrvutr)] EW W—i—Czi:éi

st yiwTé(x) +b)>1-¢,
§>0i=1,...,N.

@ luckily, we can solve its associated dual problem:

. 1
min EaTQa —ela

s.t. yla=0,
0<q; <C,

Qi = Viyjo' (xi)s(X)

@ «: N-dimensional vector
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Support Vector Machine
Solution of the Dual Problem

@ associated dual problem:
mn  SaTQa —e'
a Qa—e' «
a 2
S.t. yTa=0,

Oéaiéca

Qi = Viyjo' (xi)B(X))

@ equivalent solution:

@ no need for w and ¢(x) explicitly if we can compute
K(x,x") = ¢" (x)p(x') efficiently
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Support Vector Machine
Kernel Trick

@ let kernel K(x,x’) = ¢ (x)p(x")
@ revisit: can we compute the kernel of

P(x) = [(x)1, (X)2, - -+, (X)p (X)1(X)1, (X)1(X)2, - -, (X)o(X)p]

efficiently?
@ well, not really
@ how about this?

6(x) = [ V20001, V2(x)z, -+, V2(x)p., (X)2(X)1, -, ()o (X)o |

o K(x,x)=(1+x"x)2 -1
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Support Vector Machine
Different Kernels

@ types of kernels
e linear K(x,x’) = xTx/,
polynomial: K (x,x’) = (ax"x’ 4 r)¢
e Gaussian RBF: K (x,x’) = exp(—~|[x — X’||3)
Laplacian RBF: K(x,x") = exp(—v||x — x||1)
@ the last two equivalently have feature transformation in infinite
dimensional space!

@ new paradigm for machine learning: use many many feature
transformations, control the goodness of fitting by large-margin
(clear separation) and violation cost (amount of outlier allowed)
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Support Vectors: Meaningful Representation

. 1
min EaTQa —e'a
s.t. yla=0,
0 < Qj < C7

@ equivalent solution:

g(x) = sign(Z yioiK (i, X) + b)

@ only those with «; > 0 are needed for classification — support
vectors
@ from optimality conditions, «;:
e “= 0" no need in constructing the decision function,
away from the boundary or on the boundary
e “>0and < C”: free support vector, on the boundary
e “= C": bounded support vector,
violate the boundary (& > 0) or on the boundary

H.-T. Lin (Learning Systems Group) Introduction to SVMs 2005/11/16 14/ 20



Why is SVM Successful?

@ infinite number of feature transformation: suitable for conquering
nonlinear classification tasks

@ large-margin concept: theoretically promising
@ soft-margin trade-off: controls regularization well

@ convex optimization problems: possible for good optimization
algorithms (compared to Neural Networks and some other
learning algorithms)

@ support vectors: useful in data analysis and interpretation
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Why is SVM Not Successful?

@ SVM can be sensitive to scaling and parameters
@ standard SVM is only a “discriminative” classification algorithm

@ SVM training can be time-consuming when N is large and the
solver is not carefully implemented

@ infinite number of feature transformation < mysterious classifier
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Useful Extensions of SVM

@ multiclass SVM: use 1vsl approach to combine binary SVM to
multiclass
— the label that gets more votes from the classifiers is the
prediction

@ probability output: transform the raw output w' ¢(x) + b to a value
between [0, 1] to mean P(+1|x)
— use a sigmoid function to transform from R — [0, 1]

@ infinite ensemble learning (Lin and Li 2005):
if the kernel K(x,x") = —||x — x’||1 is used for standard SVM, the
classifier is equivalently

g(x) = sign </W9$9(X)d9 + b)

where sy(X) is a thresholding rule on one feature of x.
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Basic Use of SVM

@ scale each feature of your data to a suitable range (say, [-1, 1])

@ use a Gaussian RBF kernel K (x,x’) = exp(—||x — x'[|3)

@ use cross validation and grid search to determine a good (v, C)
pair

@ use the best (v, C) on your training set

@ do testing with the SVM classifier

all included in LIBSVM (from Lab of Prof. Chih-Jen Lin)
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Advanced Use of SVM

@ include domain knowledge by specific kernel design (e.g. train a
generative model for feature extraction, and use the extracted
feature in SVM to get discriminative power)

@ combining SVM with your favorite tools (e.g. HMM + SVM for
speech recognition)

@ fine-tune SVM parameters with specific knowledge of your
problem (e.g. different costs for different examples?)

@ interpreting the SVM results you get (e.g. are the SVs
meaningful?)
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Using SVM
Resources

LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm

LIBSVM Tools:
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools

Kernel Machines Forum: http://www.kernel-machines.org

Hsu, Chang, and Lin: A Practical Guide to Support Vector
Classification

my email: htlin@caltech.edu

acknowledgment: some figures obtained from Prof. Chih-Jen Lin
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