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Difficulty in SAGE

Problem Formulation

SAGE: serial analysis of gene expressions

the larger dataset: 90 samples (libraries) xi , each with 27679
features (counts of SAGE tags) (xi)d

labels yi : 59 cancerous samples, and 31 normal ones

can we predict the cancerous status of the sample based on
the features given?

DNA mRNA (?) biological process cancerous status

SAGE (?) machine learning
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Difficulty in SAGE

Difficulty of the Problem

how to build a classifier for the black box?
many possibilities: linear models, decision trees, classifier
ensembles, etc.
27679 features with any models above can usually cover all
possible labeling on 90 samples
– fitting perfectly on 90 samples is as poor as fitting a random
labeling

should all features be used in the black box?
not all features are useful (Alves et al. 2005)
some features may even be misleading

how to compare different models?
performance needs to be estimated with unseen samples
each sample is a precious one out of 90
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Difficulty in SAGE

“Easiness” of the Problem

27679 features give each sample much information
procedure: feature selection, then train with 89 samples, and test
on the other

A: feature selection with 89 samples
B: feature selection with 90 samples

B gets a test sample in data “preprocessing.”

how much does an extra sample in the
“preprocessing” stage affect the prediction
performance?
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Difficulty in SAGE

“Easiness” of the Problem

procedure: feature selection, then train with 89, test on the other
A: feature selection with 89 samples
B: feature selection with 90 samples

B is significantly biased towards the single sample
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1 any piece of information can affect the result dramatically
2 careful NOT to look at any test information
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Difficulty in SAGE

Our Approach of Analysis

combination of classification, feature selection, and error
estimation techniques

use different combinations to show the relative usefulness of
different techniques

systematic and repeatable on similar datasets

careful use of unseen samples

robust conclusion with multiple combinations and error estimations
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Classification Techniques

Classification Techniques

techniques that avoid overfitting

models that seem promising
four classification algorithms

AdaBoost-Stump
SVM-Linear
SVM-Gaussian
SVM-Stump
– a novel and promising paradigm through infinite ensemble
learning (Lin and Li, ECML 2005)
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Classification Techniques

Adaptive Boosting with Decision Stumps

model:

ĝ(x) = sign

(
T∑

t=1

wtst(x)

)
a finite ensemble of weak rules

each st is a decision stump (thresholding rule on a SAGE tag)
– e.g. if the count of the tag 200 greater than 10, then cancerous

each wt : a nonnegative weight for st

prediction: each st tells whether the sample is cancerous, and ĝ
reports the majority of weighted votes

automatically selects ≤ T important tags and ignore others in
prediction
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Classification Techniques

Support Vector Machine with Linear Kernel

model:

ĝ(x) = sign

(
D∑

d=1

wd(x)d + b

)
a hyperplane in RD

– e.g. if the weighted sum of all counts is greater than 10, then
cancerous

a large-margin hyperplane: clear separation between cancerous
and normal samples

each wd : sensitivity for change of (x)d

– measure of the importance of tag d
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Classification Techniques

Support Vector Machine with Gaussian Kernel

model:

ĝ(x) = sign

(
N∑

i=1

yiλi exp(−γ(x − xi)
2)

)
a nonlinear classifier, similar to a radial basis function network

large-margin hyperplane in an infinite dimensional space

pros: powerful model, often good prediction performance

cons: time-consuming to choose parameter γ, hard to interpret
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Classification Techniques

Support Vector Machine with Stump Kernel

model:

ĝ(x) = sign

 D∑
d=1

∑
q∈±1

(∫
wq,d(α)sq,d ,α(x) dα

)
+ b


large-margin infinite ensemble of decision stumps: novel and
promising

pros: powerful model, often good performance

superior power to AdaBoost-Stump due to infinity

superior power to SVM-Linear due to nonlinearity

faster parameter selection than SVM-Gauss

model: partially interpreted
– wq,d can estimate the importance of tag d
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Classification Techniques

Relative Comparison of Classification Techniques

all four have some degree of regularization: avoid overfitting

the first three were used in some gene/cancer related tasks

SVM-Stump is closely related to AdaBoost-Stump

pros and cons:
AdaBoost SVM SVM SVM

-Stump -Linear -Gauss -Stump
model power(*) − − ↑ ↑
interpretability ↑ ↑ ↓ −

speed ↑ − ↓ −
(*) it is hard to compare AdaBoost-Stump to SVM-Linear in power
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Feature Selection Techniques

Feature Selection with Ranking

Algorithm

1 rank (order) the features by their importance
2 select only the top M features

a simple strategy

relies on a good ranking algorithm
three simple ranking algorithms:

Ranking with Fisher Score
Ranking with Linear Weight
Ranking with Stump Weight

the first two have been used in similar tasks
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Feature Selection Techniques

Feature Ranking Techniques

Rank with Fisher Score (RFS):
how well can we use only (xi)d to predict yi?
Rank with Linear Weight (RLW):
what is the importance wd of (x)d in the hyperplane∑

wd(x)d + b

found by SVM-Linear?
Rank with Stump Weight (RSW):
what is the amount of decision stumps

∑
q

∫
w2

q,d(α) dα needed
for feature d in the ensemble

D∑
d=1

∑
q∈±1

(∫
wq,d(α)sq,d ,α(x) dα

)
+ b

found by SVM-Stump?
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Error Estimation Techniques

Error Estimation Techniques

v -fold cross-validation: economic use of samples

training folds: v − 1 of the v folds

test fold: the other folds is reserved unseen

estimate: average error on the reduced test fold

v -fold CV is a random process: can be repeated many times

our setting: 10 fold ×10, 5 fold ×20, or 90 fold ×1

90 fold: also called leave-one-out
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Error Estimation Techniques

Experiment Settings

Experiment Setting

1 Cross-validation splitting to training folds/test fold
2 Feature ranking on training folds
3 Feature selection by ranking (50, 100, 200, 500, 1000, 27679)
4 Classification on the reduced training folds
5 Test on the reduced test fold
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Experimental Results

Comparison of Classification Techniques

Ranking with Linear Weight Ranking with Stump Weight
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results with 10 fold CV ×10

AdaBoost-Stump is not good

SVM-Gauss is slightly worse than SVM-Linear

SVM-Stump is slightly better than SVM-Linear
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Experimental Results

Comparison of Classification Techniques

SVM-Linear and SVM-Stump are the better choices

AdaBoost SVM SVM SVM
-Stump -Linear -Gauss -Stump

model power − − ↑ ↑
interpretability ↑ ↑ ↓ −

speed ↑ − ↓ −
performance ↓ ↑ ↑ ↑
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Experimental Results

Comparison of Feature Selection Techniques

SVM-Linear SVM-Stump
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results with 10 fold CV ×10

Ranking with F-Score is not good

Ranking with Stump Weight is slightly better than
with Linear Weight
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Experimental Results

Comparison of Error Estimation Techniques

Ranking with F-Score (10 fold × 10) Ranking with F-Score (90 fold)
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leave-one-out does not give stable and explainable results
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Experimental Results

Comparison of Error Estimation Techniques

Ranking with F-Score (10 fold × 10) Ranking with F-Score (5 fold × 20)
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similar conclusions from 5 fold and 10 fold CV

10-fold uses more samples for training
– better choice considering the importance of samples
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Conclusion

Conclusion

carefully analyzed the difficult SAGE dataset
legitimate information only
robust conclusion through multiple testing

classification: SVM-Linear and SVM-Stump are both promising

feature selection: RLW and RSW are both good
– possible to achieve better performance than full set

error estimation: 10-fold CV seems to be a better choice and
leave-one-out is bad
how can we possibly distinguish between the linear model and the
stump ensemble model?

are there more samples to verify the findings?
which model selects more biologically meaningful features?
which model is biologically more plausible?
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