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Introduction

Perceptron

proposed by Rosenblatt (1958)

a single neuron;
a linear threshold classifier;
a hyperplane in Rd

define (x)0
∆
= 1 and w0

∆
= b:

y = sign(〈w, x〉)
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y = sign(〈w , x〉+ b)

a simple but useful classifier, especially for building
more complex systems
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Introduction

Perceptron Learning Rule (PLR)

an iterative optimization procedure to
learn w from S = {(xn, yn)}Nn=1
(Rosenblatt, 1962)

repeatedly, for (xn, yn) ∈ S,

1 if current w correctly classifies xn,
do nothing;

2 if current w wrongly classifies xn,
wnew = w + ynxn

convergence proved for separable S
but unstable for nonseparable cases
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Introduction

Minimum Training Error Perceptrons

w∗ ∈ argmin
w

N∑
n=1

Jyn〈w, xn〉 ≤ 0K

Hard Optimization Problem

numerically:
0/1 loss c(ρ) = Jρ ≤ 0K not
convex, not continuous, with
mostly 0 gradient

combinatorially:
NP-complete
(Marcotte and Savard, 1992)

Useful Classifier
theoretically:
w∗ converges to optimal
linear classifier when N →∞
practically:
basic building blocks for
networks/ensembles of
neurons

g

goal: an efficient algorithm guaranteed to approach w∗

even for nonseparable cases
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Introduction

Two Existing Approaches for Nonseparable Sets

w∗ ∈ argmin
w

C(w) =
N∑

n=1

c(yn · 〈w, xn〉), where c(ρ) = Jρ ≤ 0K

pocket-PLR

in addition to PLR, store the
best w encountered

guaranteed to locate w∗ with
high probability in the long
run

usually inefficient
– PLR unstable and wastes
iterations on bad candidates

support vector machine (SVM)

regularize C(w);
change c(ρ) to
hinge loss

efficiently solved  

 
0/1 loss
hinge loss

via quadratic programming

no guarantee on getting w∗

– hinge loss different from
0/1 loss
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Introduction

Our Contributions

new perceptron algorithm to minimize 0/1 loss
– efficient with guarantee on approaching w∗
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our algorithm
pocket
SVM−stochastic

empirical study to understand 0/1 loss
– insights on dealing with nonseparable data sets

better neural ensemble approach: AdaBoost + our algorithm
– useful when modeling very complex data sets
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Random Coordinate Descent

Our Algorithm: Random Coordinate Descent

PLR

wnew = w + Jyn〈w, xn〉 ≤ 0K (ynxn)

generalized and improved

⇓ generalized and improved

Random Coordinate Descent (RCD)

wnew = w + αd

instead of fixed directions ynxn, use random directions d

instead of a fixed step size 0 or 1, use the optimal step size α with
respect to d

next: how to compute the optimal step size
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Random Coordinate Descent

Computing the Optimal Step Size α

min
α∈R

N∑
n=1

Jyn〈w + αd, xn〉 ≤ 0K

Define

δn
∆
= 〈d, xn〉

when δn = 0

〈w, xn〉

when δn 6= 0

δn

(
δ−1

n 〈w, xn〉+ α
)

for those n with nonzero δn, let (x ′n, y ′n)←
(
δ−1

n 〈w, xn〉, yn sign(δn)
)

min
α∈R

∑
δn 6=0

q
y ′n

(
x ′n + α

)
≤ 0

y

optimal α can be computed from these new 1-D examples
efficiently by sorting + dynamic programming
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Random Coordinate Descent

Choosing Update Directions d

some natural candidates
1 coordinate directions ei = (. . . , 0, 1, 0, . . .)T

2 PLR directions ynxn

3 sufficiently random directions on the unit sphere ‖d‖ = 1

recall: hard optimization problem
– finite choices like coordinate or PLR stuck in local minima

sufficiently random directions guarantee convergence to global
minima w∗ in the long run

some even provably help with efficient local search
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Random Coordinate Descent

Putting Things Together

Random Coordinate Descent
iteratively,

1 pick a direction d from sufficiently random choices
2 transform (xn, yn) to (x ′n, y ′n) with w and d
3 compute optimal step size α from (x ′n, y ′n)
4 wnew = w + αd
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Experiments

Comparison as Single Perceptron Algorithms
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RCD
pocket
SVM

training error (0/1
loss): RCD usually
lowest; SVM
highest

test error: SVM
often better

pocket slow and
not the sharpest in
both cases

for a single perceptron, RCD does too good of a job
for 0/1 loss and causes overfitting
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Experiments

Comparison When Coupled with AdaBoost

au. br. cl. ge. he. pi. io. ri. so. th. vo. yi.
0

5

10

15

20

25

30

35

40

data set

te
st

 e
rro

r (
%

)

 

 
AdaBoost−RCD
AdaBoost−pocket
AdaBoost−SVM
best single perceptron

single perceptron
sufficient on 6/12
sets

AdaBoost-RCD
significantly better
than any single
perceptron on the
other half

AdaBoost-SVM
cannot improve;
AdaBoost-pocket
slow

for modeling very complex data sets with perceptron
ensembles, AdaBoost-RCD is the best
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Conclusion

Conclusion

Random Coordinate Descent: an efficient algorithm guaranteed to
minimize 0/1 loss of perceptron

theoretical analysis:
proved to converge to w∗ and to perform fast local search
empirical study:

RCD the best training error minimizer
– but can cause overfitting
AdaBoost-RCD the best perceptron ensemble approach in test
performance

Thank you. Questions?
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