Automatic Ranking by Extended Binary Classification

Hsuan-Tien Lin

Learning Systems Group Joint work with Ling Li (NIPS 2006)

EE Pizza Meeting, November 17, 2006

What is the Age-Group?

Hot or Not?

rank: natural representation of preferences in surveys

H.-T. Lin (Learning Systems Group)

How Much Did You Like These Movies?

http://www.netflix.com

Can machines use **movies you've rated** to closely predict your preferences (i.e., ranks) on **future movies**?

H.-T. Lin (Learning Systems Group)

Poor Bob

Bob impresses Mary by memorizing every given (movie, rank); but too nervous about a **new movie** and guesses randomly

- memorize \neq generalize
- prefect from Bob's view ≠ good for Mary
- perfect during training \neq good when testing

challenges: algorithms and theories for doing well when testing

Ranking Problem

- input: N examples $(x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$, e.g. hotornot: \mathcal{X} = human pictures, $\mathcal{Y} = \{1, \dots, 10\}$ netflix: \mathcal{X} = movies, $\mathcal{Y} = \{1, \dots, 5\}$
- output: a ranking function r(x) that ranks future unseen examples (x, y) "correctly"
- properties for the K elements in \mathcal{Y} :
 - ordered

- not carrying numerical information
 ★★★★★ not 2.5 times better than ★★☆☆☆
- instance representation? some meaningful vectors
- correctly? cost of wrong prediction

Cost of Wrong Prediction

 cannot quantify the numerical meaning of ranks; but can artificially quantify the cost of being wrong

infant (1)

child (2)

teen (3)

adult (4)

- small mistake classify a child as a teenager; big mistake – classify an infant as an adult
- C_{y,k}: cost when rank y predicted as rank k
- V-shaped $C_{y,k}$ with $C_{y,y} = 0$,

e.g. absolute cost
$$C_{y,k} = |y - k|, \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{pmatrix}$$

Even More Challenging: Netflix Million Dollar Prize

Leaderboard

Team Name No Grand Prize candidates yet	}	Best Score 	≝ Improvement 	Last Submit Time
Grand Prize - RMSE <= 0.8563				
wayzconsulting.com	4	0.9015	5.24	2006-11-15 06:05:32
ML@UToronto A	1	0.9021	5.18	2006-11-14 06:18:07
NIPS Reject	1	0.9034	5.05	2006-11-14 22:10:46

- input: N_i examples from each user *i* with 480,000+ users and $\sum_i N_i \approx 100,000,000$
- output: personalized predictions r(i, x) on
 2,800,000+ testing queries (i, x)
- cost: squared cost $C_{y,k} = (y k)^2$
- a huge joint ranking problem

The first team that gets 10% better than existing Netflix system gets a million USD

H.-T. Lin (Learning Systems Group)

Our Contributions

a new framework that ...

- makes the design and implementation of ranking algorithms **almost effortless**
- makes the proof of ranking theories much simpler
- unifies many existing ranking algorithms and helps understand their cons and pros
- shows that ranking is theoretically not much more complex than binary classification
- leads to promising experimental performance

Figure: answer; traditional method; our method

The Reduction Framework

Key Idea: Reduction

(iPod)

(adapter)

(cassette player)

complex ranking problems

many new results immediately come up; many existing results unified

H.-T. Lin (Learning Systems Group)

The Reduction Framework

Intuition: Associated Binary Questions

• how we query the rank of a movie x?

- is movie x better than rank 1? Yes
 - is movie *x* better than rank 2? No
 - is movie *x* better than rank 3? No
 - is movie x better than rank 4? No
- is movie x better than rank 5? No
- $g_b(x, k)$: is movie x better than rank k?
- consistent answers: $G(x) = (1, 1, 1, 0, \dots, 0)$
- extract the rank from consistent answers:
 - searching: compare to a "middle" rank each time
 - voting: $r(x) = 1 + \sum_{k} g_{b}(x, k)$
- what if the answers are not consistent? e.g. (1,0,1,1,0,0,1,0)
 voting is simple enough to analyze, and still works

accurate binary answers \Longrightarrow correct ranks

Reduction during Training

- input: *N* examples $(x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$
- tool: your favorite binary classification algorithm
- output: a binary classifier g_b(x, k) that can answer the associated questions correctly
- need to feed binary examples $(X_{n,k}, Y_{n,k})$ to the tool

$$X_{n,k} \equiv (x_n, k), \, Y_{n,k} \equiv [y_n > k]$$

- about NK extended binary examples extracted from given input – bigger, but not troublesome
- some approaches extract about N² binary examples using a different intuition
 - can be too big

Are extended binary examples of the same importance?

H.-T. Lin (Learning Systems Group)

The Reduction Framework Importance of Extended Binary Examples

- for a given movie x_n with rank $y_n = 2$, and $C_{v,k} = (y k)^2$ is x_n better than rank 1? No Yes Yes Yes is x_n better than rank 2? No No Yes Yes is x_n better than rank 3? No No No Yes is x_n better than rank 4? No No No No $r(x_n)$ 2 3 4 1 0 1 4 1
- 3 more for answering question 4 wrong; only 1 more for answering question 1 wrong
- $W_{n,k} \equiv |C_{n,k+1} C_{n,k}|$: the importance of $(X_{n,k}, Y_{n,k})$
- most binary classification algorithm can handle W_{n k}

analogy to economics: additional cost (marginal) \iff importance

cost

The Reduction Framework for Ranking

- transform ranking examples (x_n, y_n) to extended binary examples $(X_{n,k}, Y_{n,k}, W_{n,k})$ based on $C_{v,k}$
- 2 use your favorite algorithm to learn from the extended binary examples, and get $g_b(x, k) \equiv g_b(X)$
- of for each new instance x, predict its rank using $r(x) = 1 + \sum_{k} g_{b}(x, k)$
- error equivalence: accurate binary answers ⇒ correct ranks
- simplicity: works with almost any C_{y,k} and any algorithm
- up-to-date: new improvements in binary classification immediately propagates to ranking

If I have seen further it is by standing on ye shoulders of Giants – I. Newton

Unifying Existing Algorithms

- ranking with perceptrons
 - (PRank, Crammer and Singer, 2002)

several long proof

- \Rightarrow a few lines extended from binary perceptron results
- large-margin (high confidence) formulations
 - (Rajaram et al., 2003), (SVORIM, Chu and Keerthi, 2005)

results explained more directly; algorithm structure revealed

variants of existing algorithms can be designed quickly by tweaking reduction

Proposing New Algorithms

- ranking using ensemble (consensus) of classifiers
 (ORBoost, Lin and Li, 2006), OR-AdaBoost
- ranking using decision trees OR-C4.5
- ranking with large-margin classifiers OR-SVM

advantages of underlying binary algorithm inherited in the new ranking one

- simpler cost bound for PRank
- new guarantee of ranking performance using ensemble of classifiers (Lin and Li, 2006)
- new guarantee of ranking performance using large-margin classifiers, e.g.,

$$\underbrace{\mathcal{E}_{(x,y)}C_{y,r(x)}}_{\text{proceed} \text{ operator}} \leq \frac{1}{N} \sum_{n} \sum_{k} \left[\underbrace{\rho(X_{n,k}, Y_{n,k}) \leq \Delta}_{\text{low confidence}} \right] + K \cdot \underbrace{h_{\delta}(N, \Delta)}_{\text{deviation function}}$$
that

during testing

extended examples

deviation func. that decreases with more data or confidence

Experimental Comparisons

Reduction-C4.5 vs. SVORIM

Experimental Comparisons Reduction-SVM vs. SVORIM

- SVM: one of the most powerful binary classifier
- SVORIM: state-of-the-art ranking algorithm extended from a modified SVM

reducing to SVM without modification often better than SVORIM

Experimental Comparisons

Reduction-Boost vs. RankBoost

our reduction to boosting approaches results in significantly better ensemble ranking algorithm

H.-T. Lin (Learning Systems Group)

Conclusion

Conclusion

- reduction framework: simple, intuitive, and useful for ranking
- algorithmic reduction:
 - unifying existing ranking algorithms
 - proposing new ranking algorithms
- theoretic reduction:
 - new guarantee on ranking performance
- promising experimental results:
 - some for better performance
 - some for faster training time
- next level: the Netflix challenge?
 - handling huge datasets
 - finding useful representations (features)
 - using collaborative information from other users

Thank you. Questions?