From Ordinal Ranking to Binary Classification

林軒田 Hsuan-Tien Lin

Learning Systems Group, California Institute of Technology

Talk at CS Department, National Chiao Tung University March 26, 2008

Benefited from joint work with Dr. Ling Li (ALT'06, NIPS'06) & discussions with Prof. Yaser Abu-Mostafa and Dr. Amrit Pratap

Outline

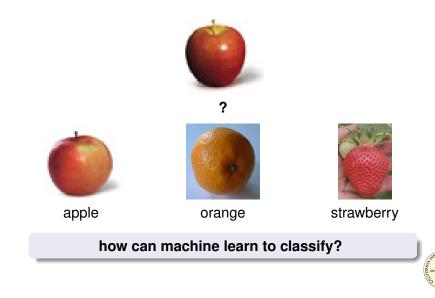
Introduction to Machine Learning

- 2 The Ordinal Ranking Setup
- 3 Reduction from Ordinal Ranking to Binary Classification
 - Algorithmic Usefulness of Reduction
 - Theoretical Usefulness of Reduction
 - Experimental Performance of Reduction

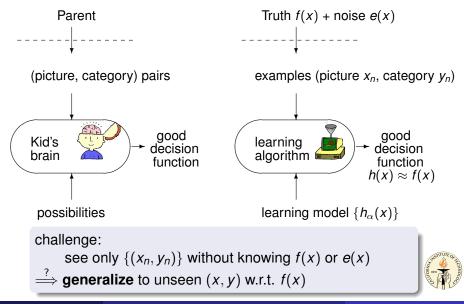
4 Conclusion

Introduction to Machine Learning

Apple, Orange, or Strawberry?



Supervised Machine Learning



Hsuan-Tien Lin (Caltech)

Machine Learning Research

- What can the machines learn? (application)
 - oncrete:

computer vision, architecture optimization, information retrieval, bio-informatics, computational finance, \cdots

- abstract setups: classification, regression, ···
- How can the machines learn? (algorithm)
 - faster
 - better generalization
- Why can the machines learn? (theory)
 - paradigms: statistical learning, reinforcement learning, ····
 - generalization guarantees

new opportunities keep coming from new applications/setups

Outline

2 The Ordinal Ranking Setup

3 Reduction from Ordinal Ranking to Binary Classification

- Algorithmic Usefulness of Reduction
- Theoretical Usefulness of Reduction
- Experimental Performance of Reduction

4 Conclusion

The Ordinal Ranking Setup

Which Age-Group?

Properties of Ordinal Ranking (1/2)

general multiclass classification cannot properly use order information

Hot or Not?

rank: natural representation of human preferences

Hsuan-Tien Lin (Caltech)

Properties of Ordinal Ranking (2/2)

ranks do **not** carry numerical information

rating 9 not 2.25 times "hotter" than rating 4

Select a rating to see the next picture. NOT 01 02 03 04 05 06 07 08 09 010 HOT

actual metric hidden

general metric regression deteriorates without correct numerical information

How Much Did You Like These Movies?

http://www.netflix.com

goal: use "movies you've rated" to automatically predict your preferences (ranks) on future movies

Ordinal Ranking Setup

Given

N examples (input x_n , rank y_n) $\in \mathcal{X} \times \mathcal{Y}$

- age-group: $\mathcal{X} = encoding(human pictures), \mathcal{Y} = \{1, \cdots, 4\}$
- hotornot: $\mathcal{X} = encoding(human pictures), \mathcal{Y} = \{1, \cdots, 10\}$
- netflix: $\mathcal{X} = encoding(movies), \mathcal{Y} = \{1, \cdots, 5\}$

Goal

an ordinal ranker (decision function) r(x) that "closely predicts" the ranks *y* associated with some **unseen** inputs *x*

ordinal ranking: a hot and important research problem

Importance of Ordinal Ranking

- relatively new for machine learning
- connecting classification and regression
- matching human preferences—many applications in social science, information retrieval, recommendation systems, ···

Ongoing Heat: Netflix Million Dollar Prize

The Ordinal Ranking Setup

Ongoing Heat: Netflix Million Dollar Prize (since 10/2006)

Given

each user *u* (480,189 users) rates N_u (from tens to thousands) movies *x*—a total of $\sum_u N_u = 100,480,507$ examples

Goal

personalized ordinal rankers $r_u(x)$ evaluated on 2,817,131 "unseen" queries (u, x)

L	ea	derboard			Display top 3		leaders.
Rank		Team Name		Best Score		<u>%</u> Improvement	Last Submit Time
	- 31	No Grand Prize candidates yet					
G	rand	Prize - RMSE <= 0.8563					
1		When Gravity and Dinosaurs Unite	1	0.8686	1	8.70	2008-02-12 12:03:24
2		BellKor		0.8686		8.70	2008-02-26 23:26:28
3		Gravity		0.8708		8.47	2008-02-06 14:12:44

the first team being 10% better than original Netflix system gets a million USD

Hsuan-Tien Lin (Caltech)

Cost of Wrong Prediction

• ranks carry no numerical information: how to say "better"?

artificially quantify the cost of being wrong

e.g. loss of customer royalty when the system says *** * * but you feel **

cost vector c of example (x, y, c):
c[k] = cost when predicting (x, y) as rank k
e.g. for (Sweet Home Alabama,★★☆☆☆), a proper cost is c = (1,0,2,10,15)

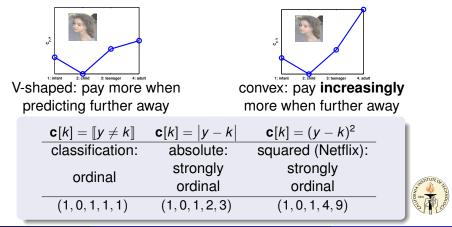
closely predict: small testing cost

The Ordinal Ranking Setup

Ordinal Cost Vectors

For an ordinal example (x, y, \mathbf{c}) , the cost vector **c** should

- follow the rank y: $\mathbf{c}[y] = 0$; $\mathbf{c}[k] \ge 0$
- respect the ordinal information: V-shaped (ordinal) or even convex (strongly ordinal)



Our Contributions

a theoretical and algorithmic foundation of ordinal ranking, which ...

- provides a methodology for designing new ordinal ranking algorithms with any ordinal cost effortlessly
- takes many existing ordinal ranking algorithms as special cases
- introduces new theoretical guarantee on the generalization performance of ordinal rankers
- leads to superior experimental results

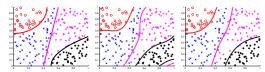


Figure: truth; traditional algorithm; our algorithm

Central Idea: Reduction

complex ordinal ranking problems

simpler binary classification problems with well-known results on models, algorithms, and theories

(cassette player)

If I have seen further it is by standing on the shoulders of Giants—I. Newton

Hsuan-Tien Lin (Caltech)

Outline

Introduction to Machine Learning

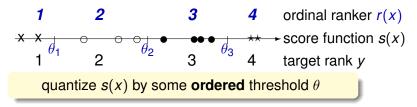
The Ordinal Ranking Setup

3 Reduction from Ordinal Ranking to Binary Classification

- Algorithmic Usefulness of Reduction
- Theoretical Usefulness of Reduction
- Experimental Performance of Reduction

4 Conclusion

If we can first get an ideal score s(x) of a movie x, how can we construct the discrete r(x) from an analog s(x)?



- ocommonly used in previous work:
 - threshold perceptrons
 - threshold hyperplanes
 - threshold ensembles

(PRank, Crammer and Singer, 2002) (SVOR, Chu and Keerthi, 2005)

(ORBoost, Lin and Li, 2006)

threshold model:
$$r(x) = \min \{k : s(x) < \theta_k\}$$

Key of Reduction: Associated Binary Queries

getting the rank using a threshold model

- is $s(x) > \theta_1$? Yes
- **2** is $s(x) > \theta_2$? No
- **3** is $s(x) > \theta_3$? No
- is $s(x) > \theta_4$? No

generally, how do we query the rank of a movie *x*?

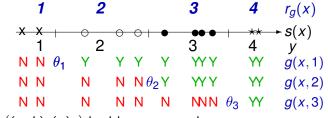
- is movie x better than rank 1? Yes
- is movie x better than rank 2? No
- is movie x better than rank 3? No
 - is movie x better than rank 4? No

associated binary queries: is movie *x* better than rank *k*?

More on Associated Binary Queries

say, the machine uses g(x, k) to answer the query *"is movie x better than rank k?"*e.g. threshold model g(x, k) = sign(s(x) - θ_k)

• K - 1 binary classification problems w.r.t. each k



• let $((x,k),(z)_k)$ be binary examples

- (*x*, *k*): extended input w.r.t. *k*-th query
- (z)_k: desired binary answer Y/N

If $g(x, k) = (z)_k$ for all k, we can compute $r_g(x)$ from g(x, k) s.t. $r_g(x) = y$.

Computing Ranks from Associated Binary Queries

when g(x, k) answers "is movie x better than rank k?"

Consider $(g(x, 1), g(x, 2), \cdots, g(x, K-1)),$

- consistent predictions: (Y, Y, N, N, N, N, N)
- extracting the rank:
 - minimum index searching: $r_g(x) = \min \{k : g(x, k) = \mathbb{N}\}$
 - counting: $r_g(x) = 1 + \sum_k \llbracket g(x,k) = Y \rrbracket$
- two approaches equivalent for consistent predictions
- noisy/inconsistent predictions? e.g. (Y, N, Y, Y, N, N, Y)

counting: simpler to analyze and robust to noise

Reduction from Ordinal Ranking to Binary Classification The Counting Approach

Say
$$y = 5$$
, i.e., $((z)_1, (z)_2, \cdots, (z)_7) = (Y, Y, Y, Y, N, N, N)$

- if *g*₁(*x*, *k*) reports (Y, Y, N, N, N, N, N)
 - $g_1(x,k)$ made 2 errors
 - $r_{g_1}(x) = 3$; absolute cost = 2

absolute cost = # of binary classification errors

- if *g*₂(*x*, *k*) reports (Y, N, Y, Y, N, N, Y)
 - g₂(x, k) made 2 errors
 - $r_{g_2}(x) = 5$; absolute cost = 0

absolute $cost \le #$ of binary classification errors

If
$$(z)_k$$
 = desired answer & r_g computed by counting,
 $|y - r_g(x)| \le \sum_{k=1}^{K-1} \left[(z)_k \ne g(x,k) \right]$.

Binary Classification Error v.s. Ordinal Ranking Cost

Say
$$y = 5$$
, i.e., $((z)_1, (z)_2, \cdots, (z)_7) = (Y, Y, Y, Y, N, N, N)$

- if *g*₁(*x*, *k*) reports (Y, Y, N, N, N, N, N)
 - $g_1(x,k)$ made 2 errors
 - $r_{g_1}(x) = 3$; squared cost = 4
- if g₃(x, k) reports consistent predictions (Y, N, N, N, N, N, N)
 - $g_3(x,k)$ made 3 errors
 - $r_{g_3}(x) = 2$; squared cost = 9

now 1 error can introduce up to 5 more in cost —how to take this into account?

Importance of Associated Binary Queries

•
$$(w)_k \equiv \left| \mathbf{c}[k+1] - \mathbf{c}[k] \right|$$
: the importance of $((x,k), (z)_k)$

• per-example cost bound (Li and Lin, 2007; Lin, 2008): for consistent predictions or strongly ordinal costs

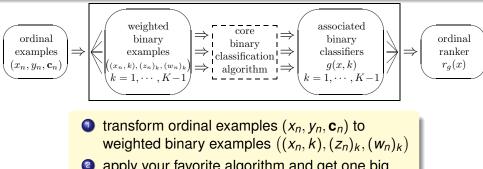
$$\mathbf{c}\big[r_g(x)\big] \leq \sum_{k=1}^{K-1} (w)_k \, \big[\!\!\big[(z)_k \neq g(x,k)\big]\!\!\big]$$

accurate binary predictions \Longrightarrow correct ranks

Hsuan-Tien Lin (Caltech)

Reduction from Ordinal Ranking to Binary Classification

The Reduction Framework (1/2)



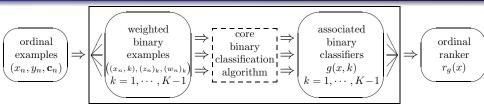
- apply your favorite algorithm and get one big joint binary classifier g(x, k)
- for each new input *x*, predict its rank using $r_g(x) = 1 + \sum_k [g(x, k) = Y]$

the reduction framework:

systematic & easy to implement

Reduction from Ordinal Ranking to Binary Classification

The Reduction Framework (2/2)



• performance guarantee:

accurate binary predictions \implies correct ranks

wide applicability: works with any ordinal c & any binary classification algorithm

• simplicity:

mild computation overheads with O(NK) binary examples

up-to-date:

allows new improvements in binary classification to be immediately inherited by ordinal ranking

Theoretical Guarantees of Reduction (1/3)

• is reduction a practical approach? YES!

error transformation theorem (Li and Lin, 2007)

For **consistent predictions** or **strongly ordinal costs**, if *g* makes test error Δ in the induced binary problem, then r_g pays test cost at most Δ in ordinal ranking.

- a one-step extension of the per-example cost bound
- conditions: general and minor
- performance guarantee in the absolute sense:

accuracy in binary classification \Longrightarrow correctness in ordinal ranking

Is reduction really **optimal**? —what if the induced binary problem is "too hard"?

Theoretical Guarantees of Reduction (2/3)

• is reduction an optimal approach? YES!

regret transformation theorem (Lin, 2008)

For a general class of **ordinal costs**, if *g* is ϵ -close to the optimal binary classifier g_* , then r_g is ϵ -close to the optimal ordinal ranker r_* .

error guarantee in the relative setting:

regardless of the absolute hardness of the induced binary prob., optimality in binary classification \implies optimality in ordinal ranking

reduction does not introduce additional hardness

"reduction to binary" sufficient, but necessary? i.e., is reduction a **principled** approach?

Theoretical Guarantees of Reduction (3/3)

• is reduction a principled approach? YES!

equivalence theorem (Lin, 2008)

For a general class of **ordinal costs**, ordinal ranking is learnable by a learning model **if and only if** binary classification is learnable by the associated learning model.

a surprising equivalence:

ordinal ranking is as easy as binary classification

reduction to binary classification: practical, optimal, and principled

Outline

Introduction to Machine Learning

The Ordinal Ranking Setup

Reduction from Ordinal Ranking to Binary Classification
 Algorithmic Usefulness of Reduction

- Theoretical Usefulness of Reduction
- Experimental Performance of Reduction

Reduction from Ordinal Ranking to Binary Classification Algorithmic Usefulness of Reduction

Unifying Existing Algorithms

ordinal ranking = reduction + cost + binary classification

ordinal ranking	cost	binary classification algorithm	
PRank	absolute	modified perceptron rule	
(Crammer and Singer, 2002)			
kernel ranking	classification	modified hard-margin SVM	
(Rajaram et al., 2003)		-	
SVOR-EXP	classification	modified soft-margin SVM	
SVOR-IMC	absolute	modified soft-margin Svivi	
(Chu and Keerthi, 2005)			
ORBoost-LR	classification	modified AdaBoost	
ORBoost-All	absolute		
(Lin and Li, 2006)			

- correctness proof significantly simplified (PRank)
- algorithmic structure revealed (SVOR, ORBoost)

variants of existing algorithms can be designed quickly by tweaking reduction

Hsuan-Tien Lin (Caltech)

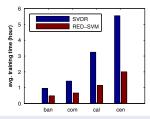
 Beduction from Ordinal Ranking to Binary Classification
 Algorithmic Usefulness of Reduction

 Designing New Algorithms
 Effortlessly

ordinal ranking = reduction + cost + binary classification

ordinal ranking	cost	binary classification algorithm		
Reduction-C4.5	absolute	standard C4.5 decision tree		
Reduction-SVM	absolute	standard soft-margin SVM		

SVOR (modified SVM) v.s. Reduction-SVM (standard SVM):



advantages of core binary classification algorithm inherited in the new ordinal ranking one

Hsuan-Tien Lin (Caltech)

Outline

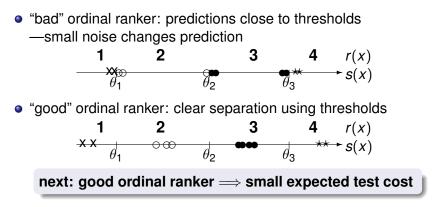
Introduction to Machine Learning

The Ordinal Ranking Setup

3 Reduction from Ordinal Ranking to Binary Classification

- Algorithmic Usefulness of Reduction
- Theoretical Usefulness of Reduction
- Experimental Performance of Reduction

Reduction from Ordinal Ranking to Binary Classification Recall: Threshold Model



Theoretical Usefulness of Reduction

Reduction from Ordinal Ranking to Binary Classification Theoretical Usefulness of Reduction

Proving New Generalization Theorems

Ordinal Ranking (Li and Lin, 2007) Bi. Class. (Bartlett and Shawe-Taylor, 1998) For SVM. For SVOR or Reduction-SVM. with probability > 1 - δ , with probability $> 1 - \delta$, expected test err. of g expected test abs. cost of r N K-1 $\leq \frac{1}{N} \sum \left[\left[\bar{\rho}(g(x_n), y_n) \leq \Phi \right] \right]$ $\leq \frac{1}{N}\sum\sum \left[\!\left[\bar{\rho}(r(x_n), y_n, k) \leq \Phi\right]\!\right]$ n=1 k=1"goodness" in training "goodness" in training + $O\left(\mathsf{poly}\left(K, \frac{\log N}{\sqrt{N}}, \frac{1}{\Phi}, \sqrt{\log \frac{1}{\delta}}\right)\right)$ + $O\left(\operatorname{poly}\left(\frac{\log N}{\sqrt{N}}, \frac{1}{\Phi}, \sqrt{\log \frac{1}{\delta}}\right)\right)$ deviation that decreases deviation that decreases with more examples with more examples

new ordinal ranking theorem = reduction + any cost + bin. thm. + math derivation

Hsuan-Tien Lin (Caltech)

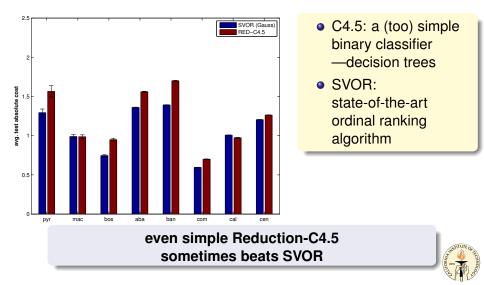
- Algorithmic Usefulness of Reduction
- Theoretical Usefulness of Reduction
- **Experimental Performance of Reduction** ۲

Conclusion

Outline

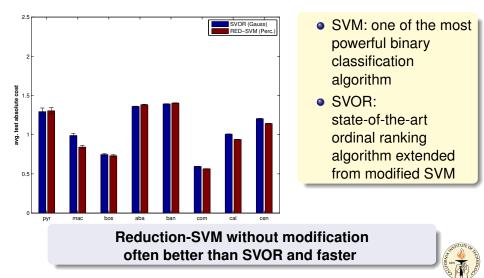
Experimental Performance of Reduction

Reduction-C4.5 v.s. SVOR



Experimental Performance of Reduction

Reduction-SVM v.s. SVOR



Hsuan-Tien Lin (Caltech)

Outline

- Introduction to Machine Learning
- 2 The Ordinal Ranking Setup
- 3 Reduction from Ordinal Ranking to Binary Classification
 - Algorithmic Usefulness of Reduction
 - Theoretical Usefulness of Reduction
 - Experimental Performance of Reduction

4 Conclusion

Conclusion

reduction framework:

practical, optimal, and principled

- algorithmic reduction:
 - take existing ones as special cases
 - design new and better ones easily
- theoretic reduction:
 - new generalization guarantee of ordinal rankers
- **superior** experimental results:

better performance and faster training time

reduction keeps ordinal ranking up-to-date

