## Automatic Ranking by Extended Binary Classification

#### Hsuan-Tien Lin

#### Joint work with Ling Li (*ALT '06, NIPS '06*) Learning Systems Group, California Institute of Technology

Talk at Institute of Information Science, Academia Sinica March 21, 2007



### **Introduction to Automatic Ranking**



Introduction to Automatic Ranking

What is Ranking?

### What is the Age-Group?



### Hot or Not?





#### rank: natural representation of human preferences

H.-T. Lin (Caltech)

Introduction to Automatic Ranking What is Ranking?

## How Much Did You Like These Movies?

http://www.netflix.com



goal: use "movies you've rated" to automatically predict your preferences (ranks) on "future movies"



Introduction to Automatic Ranking Wh

#### What is Ranking?

#### Human Ranking v.s. Automatic Ranking



#### challenge: how to make the right-hand-side work?



H.-T. Lin (Caltech)

#### Introduction to Automatic Ranking Ranking (Ordinal Regression) Problem

- given: N examples (input  $x_n$ , rank  $y_n$ )  $\in \mathcal{X} \times \mathcal{Y}$ , e.g. hotornot:  $\mathcal{X} =$  human pictures,  $\mathcal{Y} = \{1, \dots, 10\}$ netflix:  $\mathcal{X} = \text{movies}, \mathcal{Y} = \{1, \dots, 5\}$
- goal: a ranking function r(x) that "closely predicts" the ranks y associated with some unseen inputs x

Ranking Problem

#### a hot research problem:

- relatively new for machine learning
- connecting classification and regression
- matching human preferences many applications in social science and information retrieval



Introduction to Automatic Ranking

Ranking Problem

## Ongoing Heat: Netflix Million Dollar Prize

| Leaderboard |                                            |   |            | Display top 3 leaders.   |     |                   |
|-------------|--------------------------------------------|---|------------|--------------------------|-----|-------------------|
| Rank        | Team Name<br>No Grand Prize candidates yet | 1 | Best Score | <u>%</u> Improvement<br> | Las | t Submit Time<br> |
| Gran        | <u>d Prize</u> - RMSE <= 0.8563            |   |            |                          |     |                   |
| 1           | Gravity                                    | 1 | 0.8872     | 6.75                     | 200 | 7-01-28 23:18:21  |
| 2           | ICMLsubmission                             | 1 | 0.8875     | 6.72                     | 200 | 7-03-16 19:30:34  |
| 3           | ML@UToronto A                              | - | 0.8883     | 6.63                     | 200 | 7-01-19 19:00:56  |
|             |                                            |   |            |                          |     |                   |

- a competition from 2006/10
- given: each user *i* (480,000+ users) rates N<sub>i</sub> (from tens to hundreds) movies a total of ∑<sub>i</sub> N<sub>i</sub> ≈ 100,000,000 examples
- goal: personalized predictions r<sub>i</sub>(x) on 2,800,000+ testing queries (i, x)
- a huge joint ranking problem

# the first team being 10% better than existing Netflix system gets a million USD



H.-T. Lin (Caltech)

Introduction to Automatic Ranking Ranking Problem

## Properties of Ranks $\mathcal{Y} = \{1, 2, \cdots, 5\}$

representing order:



- relabeling by (3, 1, 2, 4, 5) erases information

general classification cannot properly use ordering information

• **not** carrying numerical information:

★★★★★ not 2.5 times better than ★★☆☆☆

- relabeling by (2, 3, 5, 9, 16) shouldn't change results

general regression deteriorates without correct numerical information

#### ranking resides uniquely between classification and regression



H.-T. Lin (Caltech)

## Cost of Wrong Prediction

- ranks carry no numerical meaning: how to say "closely predict"?
- artificially quantify the cost of being wrong



infant (1)



child (2)



Ranking Problem

teen (3)



adult (4)

- small mistake classify a child as a teen; big mistake – classify an infant as an adult
- $C_{y,k}$ : cost when rank y predicted as k, e.g.

– will first focus on  $C_{y,k} = |y - k|$  (absolute cost)

#### closely predict: small testing cost



H.-T. Lin (Caltech)

## **Our Accomplishments**



### a new framework that ...

- connects ranking and binary classification systematically
- unifies and clearly explains many existing ranking algorithms
- makes the design of new ranking algorithms much easier
- allows simple and intuitive proof for new ranking theorems
- leads to promising experimental results

#### next: start with a concrete and specific case; then: introduce the general framework



H.-T. Lin (Caltech)

## Automatic Ranking using Ensembles



Automatic Ranking using Ensembles

Introduction

## Intuition behind Ensemble Learning

#### **Ensemble Regression**

- "the stock price tomorrow?"
- expert *t* suggests  $h_t(x)$
- the ensemble (committee) reports weighted average of experts

$$\sum_t w_t h_t(x)$$

• stable: errors of a few experts diluted by weighted average

#### **Ensemble Classification**

- "shall we watch movie x?"
- member t:  $h_t(x) \in \pm 1$
- the ensemble (committee) reports weighted vote of members

$$\operatorname{sign}(\sum_t w_t h_t(x))$$

• **powerful**: complicated decisions approximated by weighted votes

#### ensemble: useful and successful in modeling regression and classification problems



H.-T. Lin (Caltech)

## **Our Contributions**

- new model for ranking: thresholded ensemble model
   a ranking extension of ensemble learning
- new generalization bounds for thresholded ensembles
   theoretical guarantee of testing performance
- new algorithms for constructing thresholded ensembles
   simple and efficient



Figure: target; general regression; our algorithm

#### promising experimental results



H.-T. Lin (Caltech)

## Thresholded Model

- ocommonly used in previous ranking work:
  - thresholded perceptrons (PRank, Crammer02)
  - thresholded hyperplanes (SVOR, Chu05)
- prediction procedure:
  - **)** compute a potential function H(x)
  - 2 quantize H(x) by some **ordered**  $\hat{\theta}$  to get r(x)



thresholded model:  $r(x) \equiv r_{H,\theta}(x) = \min \{k \colon H(x) < \theta_k\}$ 

## **Thresholded Ensemble Model**



- the potential function H(x) is an ensemble  $H(x) \equiv H_T(x) = \sum_{t=1}^T w_t h_t(x)$
- intuition: if many people, *h<sub>t</sub>*, say a movie *x* is "good", the potential of the movie *H*(*x*) should be high
- ensemble classification:

a special case when K = 2 and  $\theta_1 = 0$ 

classificationrankingsign( $H_T(x)$ )min { $k : H_T(x) < \theta_k$ }

#### good theoretical and algorithmic properties inherited from ensemble classification



## Recall: Goal and Cost

 goal: a ranking function r(x) that closely predicts the ranks y associated with some unseen inputs x

e.g. predicts your preference on future movies

•  $C_{y,k}$ : cost when rank *y* predicted as rank *k* absolute cost  $C_{y,k} = |y - k|$ 

e.g. loss of customer royalty when the system says ★★★★★ but you feel ★★☆☆☆

## closely predict $\iff$ small testing cost how to formalize?

## **Generalization Error**

- setup: training examples (x<sub>n</sub>, y<sub>n</sub>) and testing ones (x, y) generated i.i.d. from the same (unknown) distribution D
- what can be said about the generalization error

$$E(r) = \mathcal{E}_{(x,y)}\mathcal{C}_{y,r(x)}$$

of the chosen r(x)?

• E<sub>A</sub>: generalization error when using the absolute cost

goal: some r(x) with small generalization error



## Good Thresholded Ensembles

"bad" thresholded ensemble: predictions close to thresholds
 small noise changes prediction



• "good" thresholded ensemble: clear separation using thresholds



 $\implies$  small generalization error



## Margins of Thresholded Ensembles



margin (confidence): safe distance from the thresholdnormalized margin for thresholded ensemble

$$\bar{\rho}(\mathbf{x},\mathbf{y},\mathbf{k}) = \left\{ \begin{array}{c} H_{T}(\mathbf{x}) - \theta_{k}, \text{ if } \mathbf{y} > \mathbf{k} \\ \theta_{k} - H_{T}(\mathbf{x}), \text{ if } \mathbf{y} \le \mathbf{k} \end{array} \right\} \left/ \left( \sum_{t=1}^{T} |w_{t}| + \sum_{k=1}^{K-1} |\theta_{k}| \right) \right.$$

negative margin implies wrong prediction:

$$\sum_{k=1}^{K-1} \left[ \bar{\rho}(x, y, k) \leq 0 \right] = \left| y - r(x) \right|$$

good thresholded ensemble: large and positive training margins



H.-T. Lin (Caltech)

## Large-Margin Bounds on Generalization Error

core results:

if  $(x_n, y_n)$  i.i.d. from  $\mathcal{D}$ , for all margin criteria  $\Delta > 0$ , with probability  $> 1 - \delta$ ,



large-margin thresholded ensembles can generalize

key: connecting ranking to binary classification



## Ranking to Binary Classification



- recall: ranking ensemble extended from classification ensemble
- K 1 binary classification problems w.r.t. each  $\theta_k$
- let  $((X)_k, (Y)_k)$  be binary examples
  - $(X)_k = (x, k)$ : input w.r.t. k-th threshold

• 
$$(Y)_k = \operatorname{sign}(y - k - \frac{1}{2})$$
: binary label  $+/-$ 

key observation:

$$\begin{aligned} \mathcal{E}_{A} &= \mathcal{E}_{(x,y)\sim\mathcal{D}} \big| y - r(x) \big| \\ &= \mathcal{E}_{(x,y)\sim\mathcal{D}} \sum_{k=1}^{K-1} \big[ \bar{\rho}(x,y,k) \leq 0 \big] \\ &= (K-1) \mathcal{E}_{(x,y)\sim\mathcal{D},k\sim\mathcal{K}} \big[ \bar{\rho}(x,y,k) \leq 0 \big] \\ &= (K-1) \text{ gen. error in binary classification} \end{aligned}$$

#### ensemble ranking problem equivalent to one big joint ensemble classification problem



H.-T. Lin (Caltech)

Automatic Ranking

2007/03/21 22 / 44

Automatic Ranking using Ensembles Theoretical Properties of Thresholded Ensembles

## Parallel Between Ranking and Binary Classification

#### Bin. Classification (Schapire98)

$$\begin{array}{ll} \underset{\text{ror}}{\text{en.}} & \leq & \frac{1}{N} \sum_{n=1}^{N} \left[ \bar{\rho}(X_n, \, Y_n) \leq \Delta \right] \\ & + & O\left( \sqrt{\frac{1}{N} \left( \frac{\log^2 N}{\Delta^2} + \log \frac{1}{\delta} \right)} \right) \end{array}$$

#### Ranking

$$E_A \leq \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K-1} \left[ \bar{\rho}(\mathbf{x}_n, \mathbf{y}_n, k) \leq \Delta \right] \\ + O\left( K \sqrt{\frac{1}{N} \left( \frac{\log^2 N}{\Delta^2} + \log \frac{1}{\delta} \right)} \right)$$

Adaptive Boosting (Freund96)

one of the most successful algorithms in bin. classification

Ordinal Reg. Boosting

new algorithm for ranking that connects to the bound above

↥

#### other theoretical results derived; same technique applied to algorithms



H.-T. Lin (Caltech)

g ei

## Intuition behind Boosting

#### • boosting: a popular family of algorithms for ensemble learning

AdaBoost for ensemble classification

for  $t = 1, 2, \cdots, T$ ,

Automatic Ranking using Ensembles

- add an *h<sub>t</sub>* that matches best with the current "view" of training examples
- give a larger weight w<sub>t</sub> to h<sub>t</sub> if the match is stronger
- update "view" by emphasizing training examples with small margins

output: sign $(H_T(x))$ 

- better *h*<sub>t</sub> gets more weights (votes) in the ensemble
- each h<sub>t</sub> improves small-margin examples

how to perform ensemble ranking with boosting?



H.-T. Lin (Caltech)

Automatic Ranking using Ensembles Boosting Algorithms for Thresholded Ensembles

### **ORBoost: Ordinal Regression Boosting**

#### AdaBoost for classification

for  $t = 1, 2, \cdots, T$ ,

- add an *h<sub>t</sub>* that matches best with the current "view" of training examples
- 2 give a larger weight  $w_t$  to  $h_t$  if the match is stronger
- update "view" by emphasizing training examples with small margins

output:  $sign(H_T(x))$ 

#### ORBoost for ranking

for  $t = 1, 2, \cdots, T$ ,

- for fixed θ, add an h<sub>t</sub> that matches current "view" of the tuples (x<sub>n</sub>, y<sub>n</sub>, k) well
- 2 give a larger weight  $w_t$  to  $h_t$  if the match is stronger
- update  $\theta_k$  based on the newly added  $(h_t, w_t)$
- update "view" by emphasizing tuples with small margins

output:  $r_{H_T,\theta}(x)$ 





Automatic Ranking using Ensembles Boosting Algorithms for Thresholded Ensembles

## Connection to Large-Margin Bounds

#### Bin. Classification (Schapire98)

#### Ranking

gen. 
$$\leq \frac{1}{N} \sum_{n=1}^{N} \left[ \bar{\rho}(X_n, Y_n) \leq \Delta \right]$$
  
+  $O\left(\sqrt{\frac{1}{N} \left(\frac{\log^2 N}{\Delta^2} + \log \frac{1}{\delta}\right)}\right)$ 

$$\begin{aligned} \Xi_{\mathcal{A}} &\leq \quad \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K-1} \left[ \bar{\rho}(\boldsymbol{x}_n, \boldsymbol{y}_n, \boldsymbol{k}) \leq \Delta \right] \\ &+ \quad O\left( K \sqrt{\frac{1}{N} \left( \frac{\log^2 N}{\Delta^2} + \log \frac{1}{\delta} \right)} \right) \end{aligned}$$

#### AdaBoost

implicitly minimizing

$$\sum_{n=1}^{N} \left[ \bar{\rho}(X_n, Y_n) \leq \Delta \right]$$

#### ORBoost

implicitly minimizing:

$$\sum_{n=1}^{N}\sum_{k=1}^{K-1} \left[\bar{\rho}(\boldsymbol{x}_n, \boldsymbol{y}_n, \boldsymbol{k}) \leq \Delta\right]$$

# algorithmic reduction analogous to theoretical reduction



H.-T. Lin (Caltech)

### Advantages of ORBoost

• ensemble learning:

combine simple preferences to approximate complex targets

- thresholding: adaptively estimating scales to predict ranks
- benefits inherited from AdaBoost
  - simple implementation
  - ranking function r(x) improves when adding more  $h_t$

#### ORBoost not very vulnerable to overfitting in practice



### ORBoost v.s. RankBoost



- RankBoost (Freund03): best existing ensemble ranking algorithm
- ORBoost significantly better than RankBoost
- simpler to implement; faster to train

#### ORBoost: promising ensemble ranking algorithm



### ORBoost v.s. SVOR



 SVOR: state-of-the-art ranking algorithm using thresholded hyperplane

- ORBoost: comparable performance
- much faster training (1 hour v.s. 2 days on 6000 examples)

ORBoost: especially useful for large-scale tasks



## Summary for Ensemble Ranking

- thresholded ensemble model: useful for ranking
  - theoretical reduction: new large-margin bounds
  - algorithmic reduction: new learning algorithms
- ORBoost:
  - simplicity and better performance over existing ensemble algorithm
  - comparable performance to state-of-the-art algorithms
  - fast training and not very vulnerable to overfitting

#### next: apply the steps more generally



## Reduction from Ranking to Extended Binary Classification



Reduction from Ranking to Extended Binary Classification The Reduction Framework

#### Ranking v.s. Binary Classification

#### parallel between ranking and binary classification ensemble ranking result ensemble classification thresholded ensemble model signed ensemble large-margin bounds theorem large-margin bounds algorithm ORBoost AdaBoost many more in literature classification result ranking model thresholded perceptron

modelthresholded perceptronperceptronalgorithmPRankperceptron rulemodelthresholded hyperplanehyperplanealgorithmSVORSVM

## next: systematically reducing ranking to binary classification

## Intuition of Reduction: Associated Binary Questions

getting the rank with a thresholded ensemble

- is  $H_T(x) > \theta_1$ ? Yes
- 2 is  $H_T(x) > \theta_2$ ? No
- is  $H_T(x) > \theta_3$ ? No

• is  $H_T(x) > \theta_4$ ? No

generally, how do we query the rank of a movie *x*?

- is movie x better than rank 1? Yes
- is movie x better than rank 2? No
- is movie x better than rank 3? No
- is movie x better than rank 4? No

associated binary questions  $g_b(x, k) = g_b((X)_k)$ : is movie *x* better than rank *k*?



## Predicting from Associated Binary Questions

 $g_b(x, k)$ : is movie x better than rank k? e.g. thresholded model  $g_b(x, k) = \text{sign}(H(x) - \theta_k)$ 

- consistent answers:  $(+, +, +, -, \cdots, -)$
- extract the rank from consistent answers:
  - minimum index searching:  $r(x) = \min \{k: g_b(x, k) < 0\}$
  - counting:  $r(x) = 1 + \sum_{k} [g_b(x,k) > 0]$
- two approaches equivalent for consistent answers
- inconsistent answers? e.g. (+, -, +, +, -, -, -, +): counting is simple enough to analyze, and still works

#### are all binary questions of the same importance?



Reduction from Ranking to Extended Binary Classification The Reduction Framework

## Cost Revisited: Reasonable Cost Functions

- $C_{y,k}$ : cost when rank y predicted as k
- cost function that respects ranking properties





V-shaped: pay more when convex: predicting further away more when

when convex: pay **increasingly** more when further away



Reduction from Ranking to Extended Binary Classification The Reduction Framework

#### Importance of Extended Binary Examples

- given movie  $x_n$  with rank  $y_n = 2$ , and  $\mathcal{C}_{y,k} = (y k)^2$ is  $x_n$  better than rank 1? No Yes Yes Yes is  $x_n$  better than rank 2? No No Yes Yes is  $x_n$  better than rank 3? No No No Yes is  $x_n$  better than rank 4? No No No No  $r(x_n)$ 2 3 4 cost 0 1 4
- 3 more for answering question 3 wrong; only 1 more for answering question 1 wrong
  W<sub>V,k</sub> ≡ |C<sub>V,k+1</sub> - C<sub>V,k</sub>|: the importance of ((X)<sub>k</sub>, (Y)<sub>k</sub>)
- error reduction theorem:

for consistent answers or convex costs

$$\mathcal{C}_{y,k} \leq \sum_{k=1}^{K-1} W_{y,k} \big[ (\mathbf{Y})_k \neq g_b \big( (\mathbf{X})_k \big) \big]$$

#### accurate binary answers $\implies$ correct ranks



H.-T. Lin (Caltech)

## The Reduction Framework

- transform ranking examples  $(x_n, y_n)$  to extended binary examples  $((X_n)_k, (Y_n)_k, W_{y_n,k})$  based on  $C_{y,k}$
- 2 use your favorite algorithm to learn from the extended binary examples, and get  $g_b(x, k) \equiv g_b((X)_k)$
- So for each new instance *x*, predict its rank using  $r(x) = 1 + \sum_{k} [g_b(x, k) > 0]$ 
  - error reduction: accurate binary answers ⇒ correct ranks
  - simplicity: works with any reasonable  $C_{y,k}$  and any algorithm
  - up-to-date: new improvements in binary classification immediately propagates to ranking

# If I have seen further it is by standing on the shoulders of Giants – I. Newton



Reduction from Ranking to Extended Binary Classification

Usefulness of the Framework

## Unifying Existing Algorithms with the Framework

| ranking        | cost           | binary algorithm         |
|----------------|----------------|--------------------------|
| PRank          | absolute       | modified perceptron rule |
| (Crammer02)    |                |                          |
| kernel ranking | classification | modified hard-margin SVM |
| (Rajaram03)    |                |                          |
| SVOR-EXP       | classification | modified soft-margin SVM |
| SVOR-IMC       | absolute       | modified soft-margin SVM |
| (Chu05)        |                |                          |
| ORBoost-LR     | classification | modified AdaBoost        |
| ORBoost-All    | absolute       | modified AdaBoost        |

- development and implementation time saved
- correctness proof significantly simplified (PRank)
- algorithmic structure revealed (SVOR, ORBoost)

# variants of existing algorithms can be designed quickly by tweaking reduction



H.-T. Lin (Caltech)

## Proposing New Algorithms with the Framework

| ranking     | cost     | binary algorithm            |
|-------------|----------|-----------------------------|
| RedC4.5     | absolute | standard C4.5 decision tree |
| RedAdaBoost | absolute | standard AdaBoost           |
| RedSVM      | absolute | standard soft-margin SVM    |

SVOR (modified SVM) v.s. Red.-SVM (standard SVM):



# advantages of underlying binary algorithm inherited in the new ranking one



H.-T. Lin (Caltech)

Reduction from Ranking to Extended Binary Classification Usefulness of the Framework

### Proving New Theorems with the Framework

- showed: new bounds of generalization error using large-margin ensembles
- similarly, new bounds of generalization error using large-margin hyperplanes



#### new large-margin bounds for any reasonable $C_{y,k}$



H.-T. Lin (Caltech)

Reduction from Ranking to Extended Binary Classification

Experimental Comparisons

#### Red.-C4.5 v.s. SVOR



Reduction from Ranking to Extended Binary Classification

**Experimental Comparisons** 

#### Red.-SVM v.s. SVOR



#### Conclusion

- reduction framework: simple, intuitive, and useful for ranking
- algorithmic reduction:
  - unifying existing ranking algorithms
  - proposing new ranking algorithms
- theoretic reduction:
  - new guarantee on ranking performance
- promising experimental results:
  - some for better performance
  - some for faster training time

## reduction keeps ranking up-to-date with binary classification



## Acknowledgments

- Prof. Yaser S. Abu-Mostafa, and Amrit Pratap for many helpful discussions
- Dr. John Langford, reviewers, and previous audience for useful comments
- Dr. Tyng-Luh Liu for talk invitation

Thank you. Questions?

