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Ordinal Regression Problem

Reduction Method

Algorithmic

1 identify the type of learning
problem (ordinal regression)

2 find premade reduction
(thresholded ensemble)
and oracle learning
algorithm (AdaBoost)

3 build a ordinal regression rule
using (ORBoost) + data

RA

Theoretical
1 identify the type of learning

problem (ordinal regression)
2 find premade reduction

(thresholded ensemble)
and known generalization
bounds (large-margin
ensembles)

3 derive new bound
(large-margin thresholded
ensembles) using the
reduction + known bound

this work: a concrete instance of reductions
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Ordinal Regression Problem

Ordinal Regression

what is the age-group of the person in the picture?
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g
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rank: a finite ordered set of labels Y = {1, 2, · · · , K}
ordinal regression:
given training set {(xn, yn)}N

n=1, find a decision function g that
predicts the ranks of unseen examples well

e.g. ranking movies, ranking by document relevance, etc.

matching human preferences:
applications in social science and info. retrieval
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Ordinal Regression Problem

Properties of Ordinal Regression

regression without metric:
possibly metric underlying (age),
but not encoded in {1, 2, 3, 4}

classification with ordered categories:
small mistake – classify a teenager as a child;
big mistake – classify an infant as an adult

common loss functions:
determine the category: classification error
LC(g, x , y) =

[
g(x) 6= y

]
or at least have a close prediction: absolute error
LA(g, x , y) =

∣∣g(x)− y
∣∣

will talk about LA only;
similar for LC
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Thresholded Ensemble Model

Thresholded Model for Ordinal Regression

naive algorithm for ordinal regression:
1 do general regression on {(xn, yn)}, and get H(x)

– general regression performs badly without metric
2 set g(x) = clip(round(H(x)))

– roundoff operation (uniform quantization) cause large error

improved and generalized algorithm:
1 estimate a potential function H(x)
2 quantize H(x) by some ordered θ to get g(x)

-x x
θ1

d d d
θ2

t tt t
θ3

??
1 2 3 4 g(x)

H(x)

thresholded model: g(x) ≡ gH,θ(x) = min {k : H(x) < θk}
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Thresholded Ensemble Model

Thresholded Ensemble Model

the potential function H(x) is a weighted ensemble
H(x) ≡ HT (x) =

∑T
t=1 wtht(x)

intuition: combine preferences to estimate the overall confidence

e.g. if many people, ht , say a movie x is “good”,
the confidence of the movie H(x) should be high

ht can be binary, multi-valued, or continuous

wt < 0: allow reversing bad preferences

thresholded ensemble model:
ensemble learning for ordinal regression
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Bounds for Large-Margin Thresholded Ensembles

Margins of Thresholded Ensembles

-x x
θ1

d d d
θ2

t tt t
θ3

??

�
ρ1 -

ρ2 -
ρ3

1 2 3 4 g(x)
H(x)

margin: safe from the boundary
normalized margin for thresholded ensemble

ρ̄(x , y , k) =

{
HT (x)− θk , if y > k
θk − HT (x), if y ≤ k

}/(
T∑

t=1

∣∣wt
∣∣+ K−1∑

k=1

∣∣θk
∣∣)

negative margin ⇐⇒ wrong prediction
K−1∑
k=1

[
ρ̄(x , y , k) ≤ 0

]
⇐⇒

∣∣g(x)− y
∣∣
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Bounds for Large-Margin Thresholded Ensembles

Theoretical Reduction

-x x
– – θ1

d d d
+ + +

t tt t
+ ++ +

??
++

1 2 3 4 g(x)

H(x)

(K − 1) binary classification problems w.r.t. each θk :(
(X )k , (Y )k

)
=
(
(x , k),+/−

)
(Schapire et al., 1998) binary classification: with probability at
least 1− δ, for all ∆ > 0 and binary classifiers gc ,

E(X ,Y )∼D′
[
gc(X ) 6= Y

]
≤ 1

N

N∑
n=1

[
ρ̄(Xn, Yn) ≤ ∆

]
+ O(

log N√
N

,
1
∆

,

√
log

1
δ
)

(Lin and Li, 2006) ordinal regression: with similar settings, for all
thresholded ensembles g,

E(x,y)∼DLA(g, x , y) ≤ 1
N

N∑
n=1

K−1∑
k=1

[
ρ̄(xn, yn, k) ≤ ∆

]
+O(K ,

log N√
N

,
1
∆

,

√
log

1
δ
)

large-margin thresholded ensembles can generalize
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Algorithms for Large-Margin Thresholded Ensembles

Algorithmic Reduction

(Freund and Schapire, 1996) AdaBoost: binary classification by
operationally optimizing

min
N∑

n=1

exp
(
−ρ(xn, yn)

)
≈ max softminn ρ̄(xn, yn)

(Lin and Li, 2006)

ORBoost-LR (left-right):

min
N∑

n=1

yn∑
k=yn−1

exp
(
−ρ(xn, yn, k)

)
ORBoost-All:

min
N∑

n=1

K−1∑
k=1

exp
(
−ρ(xn, yn, k)

)

algorithmic reduction to AdaBoost
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Algorithms for Large-Margin Thresholded Ensembles

Advantages of ORBoost

ensemble learning: combine simple preferences to approximate
complex targets

threshold: adaptively estimated scales to perform ordinal
regression
inherit from AdaBoost:

simple implementation
guarantee on minimizing

∑
n,k

[
ρ̄(xn, yn, k) ≤ ∆

]
fast

practically less vulnerable to overfitting

useful properties inherited with reduction
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Algorithms for Large-Margin Thresholded Ensembles

ORBoost Experiments
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Results (ORBoost-All)

ORBoost-All simpler,
and much better than
RankBoost (Freund et
al., 2003)

ORBoost-All much
faster, and comparable
to SVM (Chu and
Keerthi, 2005)

similar for ORBoost-LR
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Conclusion

Conclusion

thresholded ensemble model: useful for ordinal regression
theoretical reduction: new large-margin bounds
algorithmic reduction: new training algorithms – ORBoost

ORBoost:

simplicity over existing boosting algorithms
comparable performance to state-of-the-art algorithms
fast training and less vulnerable to overfitting

on-going work: similar reduction technique for other theoretical
and algorithmic results with more general loss functions (Li and
Lin, 2006)

Questions?
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