Large-Margin Thresholded Ensembles for Ordinal Regression

Hsuan-Tien Lin (accepted by ALT '06, joint work with Ling Li)

Learning Systems Group, Caltech

Workshop Talk in MLSS 2006, Taipei, Taiwan, 07/25/2006

Reduction Method

Algorithmic

- identify the type of learning problem (ordinal regression)
- find premade reduction (thresholded ensemble) and oracle learning algorithm (AdaBoost)
- build a ordinal regression rule using (ORBoost) + data

Theoretical

- identify the type of learning problem (ordinal regression)
- find premade reduction (thresholded ensemble) and known generalization bounds (large-margin ensembles)
- derive new bound

 (large-margin thresholded ensembles) using the reduction + known bound

this work: a concrete instance of reductions

Ordinal Regression

• what is the age-group of the person in the picture?

2

• rank: a finite ordered set of labels $\mathcal{Y} = \{1, 2, \cdots, K\}$

- ordinal regression: given training set $\{(x_n, y_n)\}_{n=1}^N$, find a decision function *g* that predicts the ranks of unseen examples well
- e.g. ranking movies, ranking by document relevance, etc.

Properties of Ordinal Regression

- regression without metric:
 - possibly metric underlying (age), but not encoded in {1,2,3,4}
- classification with ordered categories:
 - small mistake classify a teenager as a child; big mistake – classify an infant as an adult
- o common loss functions:
 - determine the category: classification error $L_C(g, x, y) = [g(x) \neq y]$
 - or at least have a close prediction: absolute error $L_A(g, x, y) = |g(x) y|$

will talk about L_A only; similar for L_C

Thresholded Model for Ordinal Regression

- naive algorithm for ordinal regression:
 - do general regression on $\{(x_n, y_n)\}$, and get H(x)
 - general regression performs badly without metric
 - 2 set $g(x) = \operatorname{clip}(\operatorname{round}(H(x)))$
 - roundoff operation (uniform quantization) cause large error
- improved and generalized algorithm:
 - estimate a potential function H(x)
 - 2 quantize H(x) by some ordered $\hat{\theta}$ to get g(x)

thresholded model: $g(x) \equiv g_{H,\theta}(x) = \min \{k \colon H(x) < \theta_k\}$

Thresholded Ensemble Model

- the potential function H(x) is a weighted ensemble $H(x) \equiv H_T(x) = \sum_{t=1}^T w_t h_t(x)$
- intuition: combine preferences to estimate the overall confidence
- e.g. if many people, *h_t*, say a movie *x* is "good", the confidence of the movie *H*(*x*) should be high
- *h_t* can be binary, multi-valued, or continuous
- $w_t < 0$: allow reversing bad preferences

thresholded ensemble model: ensemble learning for ordinal regression

Bounds for Large-Margin Thresholded Ensembles

Margins of Thresholded Ensembles

• margin: safe from the boundary

normalized margin for thresholded ensemble

$$\bar{\rho}(\mathbf{x}, \mathbf{y}, \mathbf{k}) = \left\{ \begin{array}{c} H_{T}(\mathbf{x}) - \theta_{k}, \text{ if } \mathbf{y} > \mathbf{k} \\ \theta_{k} - H_{T}(\mathbf{x}), \text{ if } \mathbf{y} \le \mathbf{k} \end{array} \right\} \left/ \left(\sum_{t=1}^{T} |w_{t}| + \sum_{k=1}^{K-1} |\theta_{k}| \right) \right.$$

$$\begin{array}{rcl} \text{negative margin} & \Longleftrightarrow & \text{wrong prediction} \\ \sum_{k=1}^{K-1} \big[\bar{\rho}(x,y,k) \leq 0 \big] & \Longleftrightarrow & \big| g(x) - y \big| \end{array}$$

Bounds for Large-Margin Thresholded Ensembles

Theoretical Reduction

4

- (K 1) binary classification problems w.r.t. each θ_k : $((X)_k, (Y)_k) = ((x, k), +/-)$
- (Schapire et al., 1998) binary classification: with probability at least 1 − δ, for all Δ > 0 and binary classifiers g_c,

$$\mathcal{E}_{(X,Y)\sim\mathcal{D}'}\big[g_c(X)\neq Y\big]\leq \frac{1}{N}\sum_{n=1}^N\big[\bar{\rho}(X_n,Y_n)\leq \Delta\big]+O(\frac{\log N}{\sqrt{N}},\frac{1}{\Delta},\sqrt{\log\frac{1}{\delta}})$$

• (Lin and Li, 2006) ordinal regression: with similar settings, for all thresholded ensembles *g*,

$$\mathcal{E}_{(x,y)\sim\mathcal{D}}\mathcal{L}_{\mathcal{A}}(g,x,y) \leq \frac{1}{N}\sum_{n=1}^{N}\sum_{k=1}^{K-1} \left[\bar{\rho}(x_n,y_n,k) \leq \Delta\right] + O(K,\frac{\log N}{\sqrt{N}},\frac{1}{\Delta},\sqrt{\log N})$$

large-margin thresholded ensembles can generalize

 (Freund and Schapire, 1996) AdaBoost: binary classification by operationally optimizing

$$\min \sum_{n=1}^{N} \exp(-\rho(\mathbf{x}_n, \mathbf{y}_n)) \approx \max \operatorname{softmin}_n \bar{\rho}(\mathbf{x}_n, \mathbf{y}_n)$$

• (Lin and Li, 2006)

ORBoost-LR (left-right):

$$\min\sum_{n=1}^{N}\sum_{k=y_n-1}^{y_n}\exp(-\rho(x_n,y_n,k))$$

$$\min\sum_{n=1}^{N}\sum_{k=1}^{K-1}\exp(-\rho(\boldsymbol{x}_n,\boldsymbol{y}_n,\boldsymbol{k}))$$

ORBoost-All:

algorithmic reduction to AdaBoost

- ensemble learning: combine simple preferences to approximate complex targets
- threshold: adaptively estimated scales to perform ordinal regression
- inherit from AdaBoost:
 - simple implementation
 - guarantee on minimizing $\sum_{n,k} \left[\bar{\rho}(\mathbf{x}_n, \mathbf{y}_n, \mathbf{k}) \leq \Delta \right]$ fast
 - practically less vulnerable to overfitting

useful properties inherited with reduction

ORBoost Experiments

Conclusion

• thresholded ensemble model: useful for ordinal regression

- theoretical reduction: new large-margin bounds
- algorithmic reduction: new training algorithms ORBoost
- ORBoost:
 - simplicity over existing boosting algorithms
 - comparable performance to state-of-the-art algorithms
 - fast training and less vulnerable to overfitting
- on-going work: similar reduction technique for other theoretical and algorithmic results with more general loss functions (Li and Lin, 2006)

Questions?