Large-Margin Thresholded Ensembles for Ordinal Regression

Hsuan-Tien Lin and Ling Li

Learning Systems Group, California Institute of Technology, U.S.A.

Conf. on Algorithmic Learning Theory, October 9, 2006

Ordinal Regression

what is the age-group of the person in the picture?

rank: a finite ordered set of labels $\mathcal{Y} = \{1, 2, \cdots, K\}$

- ordinal regression: given training set $\{(x_n, y_n)\}_{n=1}^N$, find a decision function g that predicts the ranks of unseen examples well
- e.g. ranking movies, ranking by document relevance, etc.

matching human preferences: applications in social science and info. retrieval

Properties of Ordinal Regression

- regression without metric:
 - possibly metric underlying (age), but not encoded in {1,2,3,4}
 - monotonic invariance
 - relabel by $\{2, 3, 5, 7\}$ should not change results

general regression deteriorates without metric

- classification with ordered categories:
 - small mistake classify a teenager as a child; big mistake – classify an infant as an adult
 - no shuffle invariance
 - relabel by $\{3,1,2,4\}$ lose information

general classification cannot use ordering information

ordinal regression resides uniquely between classification and regression

Error Functions for Ordinal Regression

- two aspects of ordinal regression: determine the category – discrete nature or at least have a close prediction – ordering preference
- categorical prediction: classification error
 L_C(*g*, *x*, *y*) = [*g*(*x*) ≠ *y*]
- close prediction: absolute error $L_A(g, x, y) = |g(x) y|$

neither perfect; both common

Our Contributions

- new model for ordinal regression: thresholded ensemble model
 combines thresholding and ensemble learning
- new generalization bounds for thresholded ensembles
 theoretical guarantee of performance
- new algorithms for constructing thresholded ensembles
 - simple and efficient

Figure: target; traditional regression; our ordinal regression

promising experimental results

Thresholded Model

- o commonly used in previous work:
 - thresholded perceptrons (PRank, Crammer and Singer, 2005)
 - thresholded SVMs (SVOR, Chu and Keerthi, 2005)
- prediction procedure:
 - **o** compute a potential function H(x) (e.g. raw perceptron output)
 - 2 quantize H(x) by some ordered θ to get g(x)

thresholded model: $g(x) \equiv g_{H,\theta}(x) = \min \{k \colon H(x) < \theta_k\}$

Thresholded Ensemble Model

- the potential function H(x) is a weighted ensemble $H(x) \equiv H_T(x) = \sum_{t=1}^T w_t h_t(x)$
- intuition: combine preferences to estimate the overall confidence
- e.g. if many people, *h_t*, say a movie *x* is "good", the confidence of the movie *H*(*x*) should be high

good theoretical and algorithmic properties inherited from ensemble learning for classification

New Large-Margin Bounds of Thresholded Ensembles

Margins of Thresholded Ensembles

- margin: safe from the boundary
- normalized margin for thresholded ensemble

$$\bar{\rho}(\mathbf{x},\mathbf{y},\mathbf{k}) = \left\{ \begin{array}{c} H_{T}(\mathbf{x}) - \theta_{k}, \text{ if } \mathbf{y} > \mathbf{k} \\ \theta_{k} - H_{T}(\mathbf{x}), \text{ if } \mathbf{y} \le \mathbf{k} \end{array} \right\} \left/ \left(\sum_{t=1}^{T} |w_{t}| + \sum_{k=1}^{K-1} |\theta_{k}| \right) \right.$$

$$\begin{array}{ll} \mbox{negative margin} & \Longleftrightarrow & \mbox{wrong prediction} \\ \sum_{k=1}^{K-1} \big[\bar{\rho}(x,y,k) \leq 0 \big] & \iff & \big| g(x) - y \big| = L_{A}(g,x,y) \end{array}$$

New Large-Margin Bounds for the Model

• core results: if (x_n, y_n) i.i.d. from \mathcal{D} , with prob. $> 1 - \delta$, $\forall \Delta > 0$,

$$\begin{split} \mathcal{E}_{(x,y)\sim\mathcal{D}}\mathcal{L}_{\mathcal{A}}(g,x,y) &\leq \frac{1}{N}\sum_{n=1}^{N}\sum_{k=1}^{K-1} \left[\bar{\rho}(x_n,y_n,k) \leq \Delta\right] + O\left(K\sqrt{\frac{1}{N}\left(\frac{\log^2 N}{\Delta^2} + \log\frac{1}{\delta}\right)}\right) \\ \mathcal{E}_{(x,y)\sim\mathcal{D}}\mathcal{L}_{\mathcal{C}}(g,x,y) &\leq \frac{2}{N}\sum_{n=1}^{N}\sum_{k=y_n-1}^{y_n} \left[\bar{\rho}(x_n,y_n,k) \leq \Delta\right] + O\left(\sqrt{\frac{1}{N}\left(\frac{\log^2 N}{\Delta^2} + \log\frac{1}{\delta}\right)}\right) \end{split}$$

• sketch of the proof (to be illustrated with *L_A*):

reduce ordinal regression examples to dependent binary examples

- extract i.i.d. binary examples; apply existing classification bounds
- bound the deviation caused by the i.i.d. extraction

large-margin thresholded ensembles could generalize

New Large-Margin Bounds of Thresholded Ensembles

Reduction to Binary Classification

- *K* − 1 binary classification problems w.r.t. each θ_k
 encode (x, y, k) as ((X)_k, (Y)_k) = ((x, 1_k), sign(y − k − 0.5)): *ρ*(x, y, k) ∝ (Y)_k(H_T(x) − ⟨θ, 1_k⟩) = bin. classifier margin ρ_C((X)_k, (Y)_k)
- key observation:

$$\begin{split} \mathcal{E}_{(x,y)\sim\mathcal{D}} \mathcal{L}_{\mathcal{A}}(g,x,y) &= \mathcal{E}_{(x,y)\sim\mathcal{D}} \sum_{k=1}^{K-1} \left[\bar{\rho}(x,y,k) \leq 0 \right] \\ &= (K-1) \mathcal{E}_{(x,y)\sim\mathcal{D},k\sim\mathcal{K}} \left[\bar{\rho}(x,y,k) \leq 0 \right] \\ &= (K-1) \mathcal{E}_{((X)_{k},(Y)_{k})\sim\mathcal{D}} \left[\rho_{\mathcal{C}}((X)_{k},(Y)_{k}) \leq 0 \right] \end{split}$$

ordinal regression problem \Longrightarrow one big joint binary classification problem

Extraction of Independent Examples

$$\mathcal{E}_{(X,Y)\sim\mathcal{D}}L_{A}(g, x, y) = (K-1)\mathcal{E}_{((X)_{k}, (Y)_{k})\sim\hat{\mathcal{D}}}\big[\rho_{C}\big((X)_{k}, (Y)_{k}\big) \leq 0\big]$$

- testing distribution D̂ of ((X)_k, (Y)_k): derived from (x, y, k) ∼ D × K
- extended training examples \$\hildsymbol{\mathcal{S}} = \{((X_n)_k, (Y_n)_k)\}:
 not i.i.d. from \$\hat{\mathcal{D}}\$; cannot be directly used in existing bounds
- i.i.d. subset of \hat{S} : randomly choose k_n for each n
- apply ensemble learning bound (Schapire et al., 1998):
 if (x_n, y_n, k_n) i.i.d. from D × K, with prob. > 1 − δ, ∀Δ > 0,

$$\mathcal{E}_{(x,y)\sim\mathcal{D}}\mathcal{L}_{\mathcal{A}}(g,x,y) \leq \frac{\kappa-1}{N} \sum_{n=1}^{N} \left[\bar{\rho}(x_n,y_n,k_n) \leq \Delta \right] + O\left(\mathcal{K}\sqrt{\frac{1}{N} \left(\frac{\log^2 N}{\Delta^2} + \log \frac{1}{\delta} \right)} \right)$$

can we obtain a deterministic RHS?

New Large-Margin Bounds of Thresholded Ensembles

Deviation from the Extraction

$$\mathcal{E}_{(x,y)\sim\mathcal{D}}\mathcal{L}_{\mathcal{A}}(g,x,y) \leq \frac{K-1}{N} \sum_{n=1}^{N} \left[\bar{\rho}(x_n,y_n,k_n) \leq \Delta \right] + O\left(\mathcal{K}_{\sqrt{\frac{1}{N} \left(\frac{\log^2 N}{\Delta^2} + \log \frac{1}{\delta} \right)}} \right)$$

• let $b_n = [\bar{\rho}(x_n, y_n, k_n) \le \Delta]$: binary independent r.v. with mean

$$\mu_n = \frac{1}{K-1} \sum_{k=1}^{K-1} \left[\bar{\rho}(\boldsymbol{x}_n, \boldsymbol{y}_n, \boldsymbol{k}) \leq \Delta \right]$$

• extended Chernoff bound: with prob. $> 1 - \delta$,

$$\frac{K-1}{N}\sum_{n=1}^{N}b_n \leq \frac{1}{N}\sum_{n=1}^{N}\sum_{k=1}^{K-1}\left[\bar{\rho}(\boldsymbol{x}_n, \boldsymbol{y}_n, k) \leq \Delta\right] + O\left(\sqrt{\frac{1}{N}\log\frac{1}{\delta}}\right)$$

connection between bound and algorithm design? boosting

Boosting for Large-Margin Thresholded Ensembles

- existing algorithm (RankBoost, Freund et al., 2003): construct H_T iteratively with some margin concepts, but no θ
- our work:
 - RankBoost-AE: extended RankBoost for ordinal regression
 obtain θ by minimizing training L_A using dynamic programming
 - ORBoost: new boosting formulation for ordinal regression

ORBoost:

simpler and faster than existing approaches; connects well to large-margin bounds

New Large-Margin Algorithms for Thresholded Ensembles

ORBoost: Ordinal Regression Boosting

inspired from AdaBoost: operationally

$$\min \sum_{n=1}^{N} \exp(-\rho(\mathbf{x}_n, \mathbf{y}_n)) \approx \max \operatorname{softmin}_n \rho(\mathbf{x}_n, \mathbf{y}_n)$$

ORBoost:

OR

$$\min \sum_{n=1}^{N} \sum_{k} \exp(-\rho(x_{n}, y_{n}, k)) \ge \text{const.} \cdot \sum_{n=1}^{N} \sum_{k} [\rho(x_{n}, y_{n}, k) \le \Delta]$$

Boost-LR
$$k \in \{y_{n} - 1, y_{n}\}$$

connects to bound on L_{C}
ORBoost-All
• $k \in \{1, 2, \dots, K - 1\}$
• connects to bound on L_{A}

. .

algorithmic derivation based on theoretical bounds

H.-T. Lin and L. Li (Learning Systems Group) Large-Margin Thresholded Ensembles

- ensemble learning: combine simple preferences to approximate complex targets
- thresholding: adaptively estimating scales to perform ordinal regression
- benefits inherited from AdaBoost
 - simple implementation
 - if h_t good enough: guarantee on rapidly minimizing

$$\sum_{n,k} \left[\bar{\rho}(\mathbf{x}_n, \mathbf{y}_n, \mathbf{k}) \leq \Delta \right]$$

– decision function g improves with T

ORBoost not very vulnerable to overfitting in practice

Experimental Results

ORBoost v.s. RankBoost

ORBoost: promising boosting approach for ordinal regression

Experimental Results

ORBoost v.s. SVOR

for large-scale tasks

Conclusion

• thresholded ensemble model: useful for ordinal regression

- theoretical reduction: new large-margin bounds
- algorithmic reduction: new learning algorithms
- ORBoost:
 - simplicity and better performance over existing boosting algorithm
 - comparable performance to state-of-the-art algorithms
 - fast training and not very vulnerable to overfitting
- broader reduction view: many more bounds/algorithms and more general error functions (Li and Lin, NIPS 2006)

Thank you. Questions?