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Ordinal Regression Problem

Ordinal Regression

what is the age-group of the person in the picture?
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rank: a finite ordered set of labels Y = {1, 2, · · · , K}
ordinal regression:
given training set {(xn, yn)}N

n=1, find a decision function g that
predicts the ranks of unseen examples well

e.g. ranking movies, ranking by document relevance, etc.

matching human preferences:
applications in social science and info. retrieval

H.-T. Lin and L. Li (Learning Systems Group) Large-Margin Thresholded Ensembles 2006/10/09 2 / 18



Ordinal Regression Problem

Properties of Ordinal Regression

regression without metric:
possibly metric underlying (age),
but not encoded in {1, 2, 3, 4}
monotonic invariance
– relabel by {2, 3, 5, 7} should not change results

general regression deteriorates without metric

classification with ordered categories:
small mistake – classify a teenager as a child;
big mistake – classify an infant as an adult
no shuffle invariance
– relabel by {3, 1, 2, 4} lose information

general classification cannot use ordering information

ordinal regression resides uniquely
between classification and regression
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Ordinal Regression Problem

Error Functions for Ordinal Regression

two aspects of ordinal regression:
determine the category – discrete nature
or at least have a close prediction – ordering preference

categorical prediction: classification error
LC(g, x , y) =

[
g(x) 6= y

]
close prediction: absolute error
LA(g, x , y) =

∣∣g(x)− y
∣∣

neither perfect; both common
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Ordinal Regression Problem

Our Contributions

new model for ordinal regression: thresholded ensemble model
– combines thresholding and ensemble learning

new generalization bounds for thresholded ensembles
– theoretical guarantee of performance

new algorithms for constructing thresholded ensembles
– simple and efficient
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Figure: target; traditional regression; our ordinal regression

promising experimental results
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Thresholded Ensemble Model

Thresholded Model

commonly used in previous work:
thresholded perceptrons (PRank, Crammer and Singer, 2005)
thresholded SVMs (SVOR, Chu and Keerthi, 2005)

prediction procedure:
1 compute a potential function H(x) (e.g. raw perceptron output)
2 quantize H(x) by some ordered θ to get g(x)

-x x
θ1

d d d
θ2

t tt t
θ3

??
1 2 3 4 g(x)

H(x)

thresholded model:
g(x) ≡ gH,θ(x) = min {k : H(x) < θk}
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Thresholded Ensemble Model

Thresholded Ensemble Model

-x x
θ1

d d d
θ2

t tt t
θ3

??
1 2 3 4 g(x)

H(x)

the potential function H(x) is a weighted ensemble
H(x) ≡ HT (x) =

∑T
t=1 wtht(x)

intuition: combine preferences to estimate the overall confidence

e.g. if many people, ht , say a movie x is “good”,
the confidence of the movie H(x) should be high

good theoretical and algorithmic properties inher-
ited from ensemble learning for classification
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New Large-Margin Bounds of Thresholded Ensembles

Margins of Thresholded Ensembles

-x x
θ1

d d d
θ2

t tt t
θ3

??

�
ρ1 -

ρ2 -
ρ3

1 2 3 4 g(x)
H(x)

margin: safe from the boundary
normalized margin for thresholded ensemble

ρ̄(x , y , k) =

{
HT (x)− θk , if y > k
θk − HT (x), if y ≤ k

}/(
T∑

t=1

∣∣wt
∣∣+ K−1∑

k=1

∣∣θk
∣∣)

negative margin ⇐⇒ wrong prediction
K−1∑
k=1

[
ρ̄(x , y , k) ≤ 0

]
⇐⇒

∣∣g(x)− y
∣∣ = LA(g, x , y)
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New Large-Margin Bounds of Thresholded Ensembles

New Large-Margin Bounds for the Model

core results: if (xn, yn) i.i.d. from D, with prob. > 1− δ, ∀∆ > 0,

E(x,y)∼DLA(g, x , y) ≤ 1
N

N∑
n=1

K−1∑
k=1

[
ρ̄(xn, yn, k) ≤ ∆

]
+ O

(
K

√
1
N

(
log2 N

∆2 + log 1
δ

))

E(x,y)∼DLC(g, x , y) ≤ 2
N

N∑
n=1

yn∑
k=yn−1

[
ρ̄(xn, yn, k) ≤ ∆

]
+ O

(√
1
N

(
log2 N

∆2 + log 1
δ

))

sketch of the proof (to be illustrated with LA):
1 reduce ordinal regression examples to dependent binary examples
2 extract i.i.d. binary examples; apply existing classification bounds
3 bound the deviation caused by the i.i.d. extraction

large-margin thresholded ensembles
could generalize
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New Large-Margin Bounds of Thresholded Ensembles

Reduction to Binary Classification

-x x
– – θ1

d d d
+ + +

t tt t
+ ++ +

??
++

1 2 3 4 g(x)

H(x)

K − 1 binary classification problems w.r.t. each θk

encode (x , y , k) as
(
(X )k , (Y )k

)
=
(
(x , 1k ), sign(y − k − 0.5)

)
:

ρ̄(x , y , k) ∝ (Y )k
(
HT (x)− 〈θ, 1k 〉

)
= bin. classifier margin ρC

(
(X )k , (Y )k

)
key observation:

E(x,y)∼DLA(g, x , y) = E(x,y)∼D
∑K−1

k=1

[
ρ̄(x , y , k) ≤ 0

]
= (K − 1)E(x,y)∼D,k∼K

[
ρ̄(x , y , k) ≤ 0

]
= (K − 1)E((X)k ,(Y )k )∼D̂

[
ρC
(
(X )k , (Y )k

)
≤ 0

]
ordinal regression problem =⇒
one big joint binary classification problem
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New Large-Margin Bounds of Thresholded Ensembles

Extraction of Independent Examples

E(x,y)∼DLA(g, x , y) = (K − 1)E((X)k ,(Y )k )∼D̂
[
ρC
(
(X )k , (Y )k

)
≤ 0

]
testing distribution D̂ of

(
(X )k , (Y )k

)
: derived from

(x , y , k) ∼ D ×K
extended training examples Ŝ =

{(
(Xn)k , (Yn)k

)}
:

not i.i.d. from D̂ ; cannot be directly used in existing bounds

i.i.d. subset of Ŝ: randomly choose kn for each n

apply ensemble learning bound (Schapire et al., 1998):
if (xn, yn, kn) i.i.d. from D ×K, with prob. > 1− δ, ∀∆ > 0,

E(x,y)∼DLA(g, x , y) ≤ K−1
N

N∑
n=1

[
ρ̄(xn, yn, kn) ≤ ∆

]
+ O

(
K

√
1
N

(
log2 N

∆2 + log 1
δ

))

can we obtain a deterministic RHS?
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New Large-Margin Bounds of Thresholded Ensembles

Deviation from the Extraction

E(x,y)∼DLA(g, x , y) ≤ K−1
N

N∑
n=1

[
ρ̄(xn, yn, kn) ≤ ∆

]
+ O

(
K

√
1
N

(
log2 N

∆2 + log 1
δ

))

let bn =
[
ρ̄(xn, yn, kn) ≤ ∆

]
: binary independent r.v. with mean

µn = 1
K−1

K−1∑
k=1

[
ρ̄(xn, yn, k) ≤ ∆

]
extended Chernoff bound: with prob. > 1− δ,

K−1
N

N∑
n=1

bn ≤ 1
N

N∑
n=1

K−1∑
k=1

[
ρ̄(xn, yn, k) ≤ ∆

]
+ O

(√
1
N log 1

δ

)

connection between bound and
algorithm design? boosting
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New Large-Margin Algorithms for Thresholded Ensembles

Boosting for Large-Margin Thresholded Ensembles

existing algorithm (RankBoost, Freund et al., 2003):
construct HT iteratively with some margin concepts, but no θ

our work:
RankBoost-AE: extended RankBoost for ordinal regression
– obtain θ by minimizing training LA using dynamic programming
ORBoost: new boosting formulation for ordinal regression

ORBoost:
simpler and faster than existing approaches;
connects well to large-margin bounds
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New Large-Margin Algorithms for Thresholded Ensembles

ORBoost: Ordinal Regression Boosting

inspired from AdaBoost: operationally

min
N∑

n=1

exp
(
−ρ(xn, yn)

)
≈ max softminn ρ(xn, yn)

ORBoost:

min
N∑

n=1

∑
k

exp
(
−ρ(xn, yn, k)

)
≥ const. ·

N∑
n=1

∑
k

[
ρ(xn, yn, k) ≤ ∆

]
ORBoost-LR

k ∈ {yn − 1, yn}

connects to bound on LC

ORBoost-All

k ∈ {1, 2, · · · , K − 1}

connects to bound on LA

algorithmic derivation based on
theoretical bounds
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New Large-Margin Algorithms for Thresholded Ensembles

Advantages of ORBoost

ensemble learning:
combine simple preferences to approximate complex targets

thresholding:
adaptively estimating scales to perform ordinal regression
benefits inherited from AdaBoost

simple implementation
if ht good enough: guarantee on rapidly minimizing∑

n,k

[
ρ̄(xn, yn, k) ≤ ∆

]
– decision function g improves with T

ORBoost not very vulnerable to overfitting
in practice
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Experimental Results

ORBoost v.s. RankBoost
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Results (ORBoost-All)

significantly better
than RankBoost (best
existing boosting
approach)

simpler to implement
and less vulnerable to
overfitting

ORBoost: promising boosting approach for
ordinal regression

H.-T. Lin and L. Li (Learning Systems Group) Large-Margin Thresholded Ensembles 2006/10/09 16 / 18



Experimental Results

ORBoost v.s. SVOR
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Results (ORBoost-All)

comparable to SVOR
(state-of-the-art
algorithm)

much faster in
training (1 hour v.s.
2 days on 6000
examples)

ORBoost: could be especially useful
for large-scale tasks
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Conclusion

Conclusion

thresholded ensemble model: useful for ordinal regression
theoretical reduction: new large-margin bounds
algorithmic reduction: new learning algorithms

ORBoost:

simplicity and better performance over existing boosting algorithm
comparable performance to state-of-the-art algorithms
fast training and not very vulnerable to overfitting

broader reduction view: many more bounds/algorithms and more
general error functions (Li and Lin, NIPS 2006)

Thank you. Questions?
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