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Ordinal Regression Problem
Ordinal Regression

@ what is the age-group of the person in the picture?

2

@ rank: a finite ordered set of labels ) = {1,2,--- ,K}

@ ordinal regression:
given training set {(xn,yn)}ﬁzl. find a decision function g that
predicts the ranks of unseen examples well

@ e.g. ranking movies, ranking by document relevance, etc.

matching human preferences:
applications in social science and info. retrieval
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Ordinal Regression Problem
Properties of Ordinal Regression

@ regression without metric:

@ possibly metric underlying (age),
but not encoded in {1,2,3,4}
@ monotonic invariance

—relabel by {2, 3,5, 7} should not change results

general regression deteriorates without metric
@ classification with ordered categories:

e small mistake — classify a teenager as a child,;

big mistake — classify an infant as an adult
@ no shuffle invariance

—relabel by {3,1,2,4} lose information

general classification cannot use ordering information

ordinal regression resides uniquely /7 >
between classification and regression oh
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Ordinal Regression Problem

Error Functions for Ordinal Regression

@ two aspects of ordinal regression:
determine the category — discrete nature
or at least have a close prediction — ordering preference

@ categorical prediction: classification error
LC(ga)(?y) = [g(X) 7£ y]

@ close prediction: absolute error
La(g,%,y) = [g(x) —y|

neither perfect; both common J
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Ordinal Regression Problem

Our Contributions

@ new model for ordinal regression: thresholded ensemble model
— combines thresholding and ensemble learning

@ new generalization bounds for thresholded ensembles
— theoretical guarantee of performance

@ new algorithms for constructing thresholded ensembles
— simple and efficient

Figure: target; traditional regression; our ordinal regression Sy,

F 4

&

promising experimental results J
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Thresholded Ensemble Model
Thresholded Model

@ commonly used in previous work:

o thresholded perceptrons (PRank, Crammer and Singer, 2005)
o thresholded SVMs (SVOR, Chu and Keerthi, 2005)

@ prediction procedure:

@ compute a potential function H(x) (e.g. raw perceptron output)
@ quantize H(x) by some ordered 6 to get g(x)

1 2 3 4 g(x)
A 0> t3 H(x)
thresholded model:
9(X) = gu,p(x) = min{k: H(x) < b} J

H.-T. Lin and L. Li (Learning Systems Group)  Large-Margin Thresholded Ensembles 2006/10/09 6/18



Thresholded Ensemble Model
Thresholded Ensemble Model

1 4 g(x)

2 3 g
A 0> t3 H(x)

@ the potential function H(x) is a weighted ensemble

H(x) = Hr (x) = Yy wihy(x)
@ intuition: combine preferences to estimate the overall confidence
@ e.g. if many people, h¢, say a movie x is “good”,

the confidence of the movie H(x) should be high

good theoretical and algorithmic properties inher-
ited from ensemble learning for classification J
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New Large-Margin Bounds of Thresholded Ensembles
Margins of Thresholded Ensembles

1 2 3 4 X
91 0 03
P15
P2
P3

@ margin: safe from the boundary
@ normalized margin for thresholded ensemble

) H 0. if K T K-1
p(X,y,K) = { ng£X|)_|T(XS, :f§ 2 k }/(;lwt‘ + k;\Qk\)

negative margin <= wrong prediction

Z (x,y,k) <0 < [g(x)—y|=La(g,x,y)
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New Large-Margin Bounds of Thresholded Ensembles

New La-rge-Margin Bounds for the Model

@ core results: if (X, yn) i.i.d. from D, with prob. > 1 -6, VA >0
1 (Iog N +log 5))

-1
> [3(%n, ¥, k) < A] + 0O (K \/N

[ﬁ(xnaynak) < A] +0 <\/§ (IogAZZN +log ;))

N
5(X7y)~DLA(g,X,y) < % Z

N
Exy)~plec(9,X,y) < %Z

@ sketch of the proof (to be illustrated with L)
@ reduce ordinal regression examples to dependent binary examples

@ extract i.i.d. binary examples; apply existing classification bounds
© bound the deviation caused by the i.i.d. extraction
large-margin thresholded ensembles
could generalize J
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New Large-Margin Bounds of Thresholded Ensembles

Reduction to Binary Classification

1 2 3 4  g(x)
- -0, + +++m?:—H(X)

@ K — 1 binary classification problems w.r.t. each 6y
@ encode (x,y,k) as ((X)k, (Y )k) = ((x, 1), sign(y —k — 0.5)):

p(x,y, k) o< (Y )k (Hr (x) — (6, 1)) = bin. classifier margin pc ((X)«, (Y )x)
@ key observation:
S(X,V)NDLA(gvxay) = &xy)~D Zk . p(X,y,k) <O]

(K - )g(xy ~D k~)€[ (nyak) < 0]
= (K= DExy.r)~p o (X (Y)) <0

ordinal regression problem —
one big joint binary classification problem J
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New Large-Margin Bounds of Thresholded Ensembles

Extraction of Independent Examples

Exy)~pLa(@%,Y) = (K =1)E ), vyg~nlrc (X (Y )) < 0]
e testing distribution D of ((X)x, (Y )x): derived from

(X,y, k) ~D x K
e extended training examples S = { ((Xn)k, (Yn)k) }:

not i.i.d. from D ; cannot be directly used in existing bounds
@ i.i.d. subset of S: randomly choose k, for each n

@ apply ensemble learning bound (Schapire et al., 1998):
if (Xn,Yn, Kn) i.i.d. from D x K, with prob. > 1 —§, VA > 0,

n=1

N
Exy)~pLa(g,X 55 2 [P0 yn, kn) < A] +0 (K \/ﬁ (logAzzN +log %))

can we obtain a deterministic RHS? )
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New Large-Margin Bounds of Thresholded Ensembles

Deviation from the Extraction

N
g(X Y)NDLA(gvXay Z (Xns Yn, kn) < A} +0 (K\/,%‘ (IOQ N + log 5))

@ let by = [p(Xn,Yn, kn) < AJ: binary independent r.v. with mean

=
|
-

Hn = % [P(Xnayna )< A]

=~
Il
N

@ extended Chernoff bound: with prob. > 1 — 6,

N N K-1
%anS%ZZ[ﬁ(Xnayn’k)SA] +O< ,ﬁlog%)

n=1 n=1 k=1

connection between bound and
algorithm design? boosting J
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New Large-Margin Algorithms for Thresholded Ensembles

Boosting for Large-Margin Thresholded Ensembles

@ existing algorithm (RankBoost, Freund et al., 2003):
construct Hy iteratively with some margin concepts, but no ¢
@ our work:
o RankBoost-AE: extended RankBoost for ordinal regression
— obtain # by minimizing training La using dynamic programming
@ ORBoost: new boosting formulation for ordinal regression

ORBoost:
simpler and faster than existing approaches;
connects well to large-margin bounds

13/18
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New Large-Margin Algorithms for Thresholded Ensembles

ORBoost: Ordinal Regression Boosting

@ inspired from AdaBoost: operationally

minZexp(—p(xn,yn)) ~ max softmin, p(Xn,Yn)

@ ORBoost:
N
manZeXp p(Xn, ¥n,K)) > const.- > > "[p(Xn, yn. k) < A]
n=1 k n=1 k
ORBoost-LR ORBoost-All
o ke{yn—1,yn} e ke{l,2,--- K-1}
@ connects to bound on L¢ @ connects to bound on La

algorithmic derivation based on
theoretical bounds J
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New Large-Margin Algorithms for Thresholded Ensembles
Advantages of ORBoost

@ ensemble learning:

combine simple preferences to approximate complex targets
@ thresholding:

adaptively estimating scales to perform ordinal regression
@ benefits inherited from AdaBoost

e simple implementation
e if hy good enough: guarantee on rapidly minimizing

> [p(Xn, Ya k) < A

n,k

— decision function g improves with T

ORBoost not very vulnerable to overfitting
in practice J
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Experimental Results
ORBoost v.s. RankBoost

@ significantly better

il 1 than RankBoost (best
i existing boosting
5oy 1 approach)
z @ simpler to implement
E | and less vulnerable to

overfitting
05

py ma bo ab ba co ca ce
dataset

ORBoost: promising boosting approach for
ordinal regression J
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ORBoost v.s. SVOR

@ comparable to SVOR
il 1 (state-of-the-art
. algorithm)
H @ much faster in
E training (1 hour v.s.
g 1 2 days on 6000
examples)
05 o

py ma bo ab ba co ca ce
dataset

ORBoost: could be especially useful J

for large-scale tasks
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Conclusion
Conclusion

@ thresholded ensemble model: useful for ordinal regression
o theoretical reduction: new large-margin bounds
e algorithmic reduction: new learning algorithms

@ ORBoost:

e simplicity and better performance over existing boosting algorithm
e comparable performance to state-of-the-art algorithms
e fast training and not very vulnerable to overfitting

@ broader reduction view: many more bounds/algorithms and more
general error functions (Li and Lin, NIPS 2006)

Thank you. Questions? J

TUTE G,
P EN
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