Distance Based SVM Kernels for Infinite Ensemble Learning

Hsuan-Tien Lin and Ling Li

Learning Systems Group, California Institute of Technology

ICONIP, November 2, 2005

Setup

notation:

- examples: $x \in \mathcal{X} \subseteq \mathbb{R}^{D}$
- labels: *y* ∈ {+1, -1}
- hypotheses (classifiers): functions from $\mathcal{X} \to \{+1,-1\}$
- binary classification problem: given training examples and labels
 {(x_i, y_i)}^N_{i=1}, find a classifier g(x) that predicts the labels of
 unseen examples well
- ensemble learning: weighted vote of a committee of hypotheses

$$g(x) = \text{sign}\left(\sum w_t h_t(x)\right), w_t \ge 0, h_t \in \mathcal{H}$$

$g(\cdot)$ is usually better than individual $h(\cdot)$

Traditional Ensemble Learning with SVM

• traditional ensemble learning: iteratively find (w_t, h_t) for $t = 1, 2, \dots, T$

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(\mathbf{x})\right), w_t \ge 0, h_t \in \mathcal{H}$$

• AdaBoost: asymp. approximate an optimal ensemble

$$\min_{w,h} \|w\|_1, \text{ s.t. } y_i\left(\sum_{t=1}^{\infty} w_t h_t(x_i)\right) \geq 1, w_t \geq 0$$

by T iterations of coordinate descent on barrier algorithm

is an infinite ensemble better?

• infinite ensemble learning: $|\mathcal{H}| = \infty$, and possibly **infinite** number of nonzero weights w_t

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum w_t h_t(\mathbf{x})\right), h_t \in \mathcal{H}, w_t \ge 0$$

- infinite ensemble learning is a challenge (e.g. Vapnik, 1998)
- SVM can handle infinite number of weights with suitable kernels (e.g. Schölkopf and Smola, 2002)
- SVM and AdaBoost are connected (e.g. Rätsch et al., 2001)

can SVM be applied to infinite ensemble learning?

Connection between SVM and AdaBoost

Framework of Infinite Ensemble Learning

Algorithm

- Consider a hypothesis set \mathcal{H}
- 2 Embed \mathcal{H} in a kernel $\mathcal{K}_{\mathcal{H}}$ using $\phi_{d} \Leftrightarrow h_{t}$
- Properly choose other SVM parameters
- **3** Train SVM with $\mathcal{K}_{\mathcal{H},r}$ and $\{(x_i, y_i)\}_{i=1}^N$
- Output an infinite ensemble classifier
- If *H* is negation complete and contains a constant hypothesis, SVM classifier is equivalent to an infinite ensemble classifier
- SVM as an optimization machinery: training routines are widely available (LIBSVM)
- SVM as a well-studied learning model: inherit the profound regularization properties

Embedding Hypotheses into the Kernel

$$\mathcal{K}(\boldsymbol{x}, \boldsymbol{x}') = \sum_{t=1}^{\infty} h_t(\boldsymbol{x}) h_t(\boldsymbol{x}') \quad \text{(may not converge)}$$

$$\Rightarrow \quad \mathcal{K}(\boldsymbol{x}, \boldsymbol{x}') = \sum_{d=1}^{\infty} [r_d h_d(\boldsymbol{x})] [r_d h_d(\boldsymbol{x}')] \quad \text{(with some positive } r)$$

$$\Rightarrow \quad \mathcal{K}(\boldsymbol{x}, \boldsymbol{x}') = \int [r(\alpha) h_\alpha(\boldsymbol{x})] [r(\alpha) h_\alpha(\boldsymbol{x}')] \, d\alpha \quad \text{(handle uncountable cases)}$$

- Let $\phi_{\mathbf{x}}(\alpha) = r(\alpha)h_{\alpha}(\mathbf{x})$, the kernel $\mathcal{K}_{\mathcal{H},r}(\mathbf{x},\mathbf{x}') = \int_{\mathcal{C}} \phi_{\mathbf{x}}(\alpha)\phi_{\mathbf{x}'}(\alpha) d\alpha$ embodies $\mathcal{H} = \{h_{\alpha} : \alpha \in \mathcal{C}\}$
- $\mathcal{K}_{\mathcal{H},r}(\mathbf{x}, \mathbf{x}')$: an inner product for $\phi_{\mathbf{x}}$ and $\phi_{\mathbf{x}'}$ in $\mathcal{L}_2(\mathcal{C})$

examples: stump and perceptron kernels

Stump Kernel

- decision stump: $s_{q,d,\alpha}(x) = q \cdot \text{sign}((x)_d \alpha)$
- simplicity: popular for ensemble learning
- consider $S = \{s_{q,d,\alpha_d} : q \in \pm 1, 1 \le d \le D, \alpha_d \in [L_d, R_d]\}$:

Definition

The stump kernel $\mathcal{K}_{\mathcal{S}}$ is defined for \mathcal{S} with $r(q, d, \alpha_d) = \frac{1}{2}$:

$$\mathcal{K}_{\mathcal{S}}(\boldsymbol{x}, \boldsymbol{x}') = \Delta_{\mathcal{S}} - \|\boldsymbol{x} - \boldsymbol{x}'\|_{1},$$

where $\Delta_{\mathcal{S}} = \frac{1}{2} \sum_{d=1}^{D} (R_d - L_d)$ is a constant

Perceptron Kernel

- a simple hyperplane: $p_{\theta,\alpha}(x) = \operatorname{sign}(\theta^T x \alpha)$
- not easy for ensemble learning: hard to design good algorithm
- consider $\mathcal{P} = \{ p_{\theta, \alpha} \colon \|\theta\|_2 = 1, \alpha \in [-R, R] \}$:

Definition

The perceptron kernel $\mathcal{K}_{\mathcal{P}}$ is defined for \mathcal{P} with a constant $r(\theta, \alpha)$:

$$\mathcal{K}_{\mathcal{P}}(\mathbf{x}, \mathbf{x}') = \Delta_{\mathcal{P}} - \|\mathbf{x} - \mathbf{x}'\|_2,$$

where $\Delta_{\mathcal{P}}$ is a constant.

Properties of the Novel Kernels

- simple to compute: can even drop $\Delta_{\mathcal{S}}$ or $\Delta_{\mathcal{P}}$
 - adding/subtracting a constant does not change the solution under SVM linear constraint $\sum y_i \lambda_i = 0$
- infinite power: perfect separability under mild assumptions
 - similar power to popular Gaussian kernel: exp(-γ||x x'||₂²)
 suitable control on the power may give good performance
- fast automatic parameter selection: a good parameter C only
 - Gaussian kernel depends on a good (γ, C) pair (usually 10 times more computation)
- feature space interpretation: domain-specific tuning
 - e.g. stump kernel for gene selection: the stump weight is a natural estimate of gene importance (Lin and Li, ECML/PKDD Discovery Challenge, 2005)

Experimental Comparison

Comparison between SVM and AdaBoost

Results

- fair comparison between AdaBoost and SVM
- SVM is usually best – benefits to go to infinity

Experimental Comparison

Comparison of SVM Kernels

Conclusion

- derived two useful kernels: stump kernel and perceptron kernel
- provided meanings to specific distance metric
- stump kernel: succeeded in specific applications
 - existing AdaBoost-Stump applications may switch
- perceptron kernel: similar to Gaussian, faster in parameter selection
 - can be an alternative to SVM-Gauss
- not the only kernels:
 - $\bullet~$ Laplacian kernel \rightarrow infinite ensemble of decision trees
 - $\bullet~\mbox{Exponential kernel} \rightarrow \mbox{infinite ensemble of decision regions}$
- SVM: a machinery for conquering infinity
 - possible to apply similar machinery to areas that need infinite or lots of aggregation

