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Motivation of Infinite Ensemble Learning

Learning Problem

notation: example x ∈ X ⊆ RD and label y ∈ {+1,−1}
hypotheses (classifiers): functions from X → {+1,−1}
binary classification problem: given training examples and labels
{(xi , yi)}N

i=1, find a classifier g(x) : X → {+1,−1} that predicts the
label of unseen x well
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Motivation of Infinite Ensemble Learning

Ensemble Learning

g(x) : X → {+1,−1}

ensemble learning: popular paradigm (bagging, boosting, etc.)

ensemble: weighted vote of a committee of hypotheses
g(x) = sign(

∑
wtht(x))

ht : base hypotheses, usually chosen from a set H
wt : nonnegative weight for ht

ensemble usually better than individual ht(x) in
stability/performance
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Motivation of Infinite Ensemble Learning

Infinite Ensemble Learning

g(x) = sign
(∑

wtht(x)
)

, ht ∈ H, wt ≥ 0

set H can be of infinite size

traditional algorithms: assign finite number of nonzero wt

1 is finiteness regularization and/or restriction ?
2 how to handle infinite number of nonzero weights?
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Motivation of Infinite Ensemble Learning

SVM for Infinite Ensemble Learning

Support Vector Machine (SVM): large-margin hyperplane in some
feature space

SVM: possibly infinite dimensional hyperplane
g(x) = sign(

∑
wdφd(x) + b)

an important machinery to conquer infinity: kernel trick.

how can we use Support Vector
Machinery for infinite ensemble
learning ?
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Connecting SVM and Ensemble Learning

Properties of SVM

g(x) = sign(
∑∞

d=1 wdφd(x) + b) = sign
(∑N

i=1 λiyiK(xi , x) + b
)

a successful large-margin learning algorithm.

goal: (infinite dimensional) large-margin hyperplane

min
w ,b

1
2
‖w‖2

2 + C
N∑

i=1

ξi , s.t. yi

( ∞∑
d=1

wdφd(xi) + b

)
≥ 1− ξi , ξi ≥ 0

optimal hyperplane: represented through duality

key for handling infinity: computation with kernel tricks
K(x , x ′) =

∑∞
d=1 φd(x)φd(x ′)

regularization: controlled with the trade-off parameter C
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Connecting SVM and Ensemble Learning

Properties of AdaBoost

g(x) = sign
(∑T

t=1 wtht(x)
)

a successful ensemble learning algorithm

goal: asymptotically, large-margin ensemble

min
w ,h

‖w‖1, s.t. yi

( ∞∑
t=1

wtht(xi)

)
≥ 1, wt ≥ 0

optimal ensemble: approximated by finite one
key for good approximation:

finiteness: some ht1(xi) = ht2(xi) for all i
sparsity: optimal ensemble usually has many zero weights

regularization: finite approximation
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Connecting SVM and Ensemble Learning

Connection between SVM and AdaBoost

φd(x) ⇔ ht(x)

SVM AdaBoost
G(x) =

∑
k wkφk (x) + b G(x) =

∑
k wkhk (x)

wk ≥ 0
hard-goal

min ‖w‖p, s.t. yiG(xi) ≥ 1
p = 2 p = 1

key for infinity
kernel trick finiteness and sparsity

regularization
soft-margin trade-off finite approximation
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SVM-Based Framework of Infinite Ensemble Learning

Challenge

challenge: how to design a good infinite ensemble learning
algorithm?

traditional ensemble learning: iterative and cannot be directly
generalized

our main contribution: novel and powerful infinite ensemble
learning algorithm with Support Vector Machinery

our approach: embedding infinite number of hypotheses in SVM
kernel, i.e., K(x , x ′) =

∑∞
t=1 ht(x)ht(x ′)

– then, SVM classifier: g(x) = sign(
∑∞

t=1 wtht(x) + b)

1 does the kernel exist?
2 how to ensure wt ≥ 0?
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SVM-Based Framework of Infinite Ensemble Learning

Embedding Hypotheses into the Kernel

Definition

The kernel that embodies H = {hα : α ∈ C} is defined as

KH,r (x , x ′) =

∫
C
φx(α)φx ′(α) dα,

where C is a measure space, φx(α) = r(α)hα(x), and r : C → R+ is
chosen such that the integral always exists

integral instead of sum: works even for uncountable H
existence problem handled with a suitable r(·)
KH,r (x , x ′): an inner product for φx and φx ′ in F = L2(C)
the classifier: g(x) = sign

(∫
C w(α)r(α)hα(x) dα + b

)
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SVM-Based Framework of Infinite Ensemble Learning

Negation Completeness and Constant Hypotheses

g(x) = sign
(∫

C
w(α)r(α)hα(x) dα + b

)
not an ensemble classifier yet
w(α) ≥ 0?

hard to handle: possibly uncountable constraints
simple with negation completeness assumption on H
(h ∈ H if and only if (−h) ∈ H)
e.g. neural networks, perceptrons, decision trees, etc.
for any w , exists nonnegative w̃ that produces same g

What is b?
equivalently, the weight on a constant hypothesis
another assumption: H contains a constant hypothesis

with mild assumptions, g(x) is equivalent to
an ensemble classifier
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SVM-Based Framework of Infinite Ensemble Learning

Framework of Infinite Ensemble Learning

Algorithm

1 Consider a hypothesis set H (negation complete and contains a
constant hypothesis)

2 Construct a kernel KH,r with proper r(·)
3 Properly choose other SVM parameters
4 Train SVM with KH,r and {(xi , yi)}N

i=1 to obtain λi and b

5 Output g(x) = sign
(∑N

i=1 yiλiKH(xi , x) + b
)

hard: kernel construction

SVM as an optimization machinery: training routines are widely
available

SVM as a well-studied learning model: inherit the profound
regularization properties
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Concrete Instance of the Framework: Stump Kernel

Decision Stump

decision stump: sq,d ,α(x) = q · sign((x)d − α)
simplicity: popular for ensemble learning

�
�

�
�(x)2 ≥ α?

�
�

�	
Y

@
@

@R
N�

�
�
�+1

�
�

�
�−1

(a) Decision Process

-

6

s+1,2,α(x) = +1

(x)2 = α

(x)2

(x)1

(b) Decision Boundary

Figure: Illustration of the decision stump s+1,2,α(x)
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Concrete Instance of the Framework: Stump Kernel

Stump Kernel

consider the set of decision stumps
S =

{
sq,d ,αd : q ∈ {+1,−1} , d ∈ {1, . . . , D} , αd ∈ [Ld , Rd ]

}
when X ⊆ [L1, R1]× [L2, R2]× · · · × [LD, RD], S is negation
complete, and contains a constant hypothesis

Definition

The stump kernel KS is defined for S with r(q, d , αd) = 1
2

KS(x , x ′) = ∆S −
D∑

d=1

∣∣(x)d − (x ′)d
∣∣ = ∆S − ‖x − x ′‖1,

where ∆S = 1
2

∑D
d=1(Rd − Ld) is a constant
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Concrete Instance of the Framework: Stump Kernel

Properties of Stump Kernel

simple to compute: can even use a simpler one
K̃S(x , x ′) = −‖x − x ′‖1 while getting the same solution

under the dual constraint
∑

i yiλi = 0, using KS or K̃S is the same
feature space explanation for `1-norm distance

infinite power: under mild assumptions, SVM-Stump with C = ∞
can perfectly classify all training examples

if there is a dimension for which all feature values are different, the
kernel matrix K with Kij = K(xi , xj) is strictly positive definite
similar power to the popular Gaussian kernel
exp(−γ‖x − x ′‖2

2)
– suitable control on the power leads to good performance
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Concrete Instance of the Framework: Stump Kernel

Properties of Stump Kernel (Cont’d)

fast automatic parameter selection: only needs to search for a
good soft-margin parameter C

scaling the stump kernel is equivalent to scaling soft-margin
parameter C
Gaussian kernel depends on a good (γ, C) pair (10 times slower)

well suited in some specific applications:
cancer prediction with gene expressions
(Lin and Li, ECML/PKDD Discovery Challenge, 2005)
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Concrete Instance of the Framework: Stump Kernel

Infinite Decision Stump Ensemble

g(x) = sign

 ∑
q∈{+1,−1}

D∑
d=1

∫ Rd

Ld

wq,d(α)sq,d ,α(x) dα + b


each sq,d ,α: infinitesimal influence wq,d(α) dα

equivalently,

g(x) = sign

 ∑
q∈{+1,−1}

D∑
d=1

Ad∑
a=0

ŵq,d ,aŝq,d ,a(x) + b


ŝ: a smoother variant of decision stump

(x)d(xi)d (xj)d

ŝ(x)
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Concrete Instance of the Framework: Stump Kernel

Infinitesimal Influence

g(x) = sign

 ∑
q∈{+1,−1}

D∑
d=1

Ad∑
a=0

ŵq,d ,aŝq,d ,a(x) + b


infinity → dense combination of finite number of smooth stumps

infinitesimal influence → concrete weight of the smooth stumps

(x)d(xi)d (xj)d

ŝ(x)

SVM: dense
combination of
smoothed stumps

(x)d(xi)d (xj)d

s(x)

AdaBoost: sparse
combination of middle
stumps
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Experimental Comparison

Experiment Setting

ensemble learning algorithms:
SVM-Stump: infinite ensemble of decision stumps (dense
ensemble of smooth stumps)
SVM-Mid: dense ensemble of middle stumps
AdaBoost-Stump: sparse ensemble of middle stumps

SVM algorithms: SVM-Stump versus SVM-Gauss

artificial, noisy, and realworld datasets

cross-validation for automatic parameter selection of SVM

evaluate on hold-out test set and averaged over 100 different splits
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Experimental Comparison

Comparison between SVM and AdaBoost
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Results

fair comparison
between AdaBoost
and SVM

SVM-Stump is
usually best –
benefits to go to
infinity

SVM-Mid is also
good – benefits to
have dense
ensemble

sparsity and
finiteness are
restrictions
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Experimental Comparison

Comparison between SVM and AdaBoost (Cont’d)
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left to right: SVM-Stump, SVM-Mid, AdaBoost-Stump

smoother boundary with infinite ensemble (SVM-Stump)

still fits well with dense ensemble (SVM-Mid)

cannot fit well when sparse and finite (AdaBoost-Stump)
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Experimental Comparison

Comparison of SVM Kernels
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Results

SVM-Stump is
only a bit worse
than SVM-Gauss

still benefit with
faster parameter
selection in some
applications
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Conclusion

Conclusion

novel and powerful framework for infinite ensemble learning

derived a new and meaningful kernel
– stump kernel: succeeded in specific applications

infinite ensemble learning could be better – existing
AdaBoost-Stump applications may switch
not the only kernel:

perceptron kernel → infinite ensemble of perceptrons
Laplacian kernel → infinite ensemble of decision trees

SVM: our machinery for conquering infinity
– possible to apply similar machinery to areas that need infinite or
lots of aggregation
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